Orbits
We define orbits as a set of darts that are accessible from a given dart, using a certain set of beta functions. For example:
- ⟨β1⟩(d) refers to all darts accessible from d using β1 recursively any number of times.
- ⟨β1, β3⟩(d) refers to all darts accessible from d using any combination of β1 and β3.
i-cells
A specific subset of orbits, referred to as i-cells are defined and often used in algorithms. The general definition is the following:
- if i = 0: 0-cell(d) = ⟨{ βj o βk with 1 ≤ j < k ≤ N }⟩(d)
- else: i-cell(d) = ⟨β1, β2, ..., βi-1, βi+1, ..., βN⟩(d)
In our case, we can use specialized definitions for our dimensions:
i | Geometry | 2-map | 3-map |
---|---|---|---|
0 | Vertex | ⟨β1 o β2⟩(d) or ⟨β2 o β-1⟩(d) | ⟨β3 o β2, β1 o β3⟩(d) or ⟨β3 o β2, β3 o β-1⟩(d) |
1 | Edge | ⟨β2⟩(d) | ⟨β2, β3⟩(d) |
2 | Face | ⟨β1⟩(d) | ⟨β1, β3⟩(d) |
3 | Volume | - | ⟨β1, β2⟩(d) |