pub struct Vertex2<T: CoordsFloat>(pub T, pub T);
Expand description
2D vertex representation
§Generics
T: CoordsFloat
– Generic type for coordinates representation.
§Example
use honeycomb_core::prelude::{Vector2, Vertex2};
let v1 = Vertex2(1.0, 0.0);
let v2 = Vertex2(1.0, 1.0);
assert_eq!(v1.x(), 1.0);
assert_eq!(v1.y(), 0.0);
let two: f64 = 2.0;
// vectorAB = vertexB - vertexA
let v2_minus_v1: Vector2<f64> = v2 - v1;
assert_eq!(v2_minus_v1.norm(), 1.0);
assert_eq!(v2_minus_v1.unit_dir()?, Vector2::unit_y());
let mut v3 = Vertex2(0.0, 1.0);
// vertexA + vectorB = vertexA'
v3 += v2_minus_v1;
assert_eq!(v3.x(), 0.0);
assert_eq!(v3.y(), 2.0);
Tuple Fields§
§0: T
§1: T
Implementations§
Source§impl<T: CoordsFloat> Vertex2<T>
impl<T: CoordsFloat> Vertex2<T>
Sourcepub fn into_inner(self) -> (T, T)
pub fn into_inner(self) -> (T, T)
Sourcepub fn average(lhs: &Vertex2<T>, rhs: &Vertex2<T>) -> Vertex2<T>
pub fn average(lhs: &Vertex2<T>, rhs: &Vertex2<T>) -> Vertex2<T>
Compute the mid-point between two vertices.
§Return
Return the mid-point as a new Vertex2 object.
§Panics
This function may panic if it cannot initialize an object T: CoordsFloat
from the value
2.0
. The chance of this happening when using T = f64
or T = f32
is most likely zero.
§Example
use honeycomb_core::prelude::Vertex2;
let far_far_away: Vertex2<f64> = Vertex2(2.0, 2.0);
let origin: Vertex2<f64> = Vertex2::default();
assert_eq!(Vertex2::average(&origin, &far_far_away), Vertex2(1.0, 1.0));
Trait Implementations§
Source§impl<T: CoordsFloat> AddAssign<&Vector2<T>> for Vertex2<T>
impl<T: CoordsFloat> AddAssign<&Vector2<T>> for Vertex2<T>
Source§fn add_assign(&mut self, rhs: &Vector2<T>)
fn add_assign(&mut self, rhs: &Vector2<T>)
Performs the
+=
operation. Read moreSource§impl<T: CoordsFloat> AddAssign<Vector2<T>> for Vertex2<T>
impl<T: CoordsFloat> AddAssign<Vector2<T>> for Vertex2<T>
Source§fn add_assign(&mut self, rhs: Vector2<T>)
fn add_assign(&mut self, rhs: Vector2<T>)
Performs the
+=
operation. Read moreSource§impl<T: CoordsFloat> AttributeBind for Vertex2<T>
impl<T: CoordsFloat> AttributeBind for Vertex2<T>
Attribute support definitions
- BINDS TO 0-CELLS
Source§const BIND_POLICY: OrbitPolicy = OrbitPolicy::Vertex
const BIND_POLICY: OrbitPolicy = OrbitPolicy::Vertex
OrbitPolicy
determining the kind of topological entity to which the attribute
is associated.Source§type StorageType = AttrSparseVec<Vertex2<T>>
type StorageType = AttrSparseVec<Vertex2<T>>
Storage type used for the attribute.
Source§type IdentifierType = u32
type IdentifierType = u32
Identifier type of the entity the attribute is bound to.
Source§impl<T: CoordsFloat> AttributeUpdate for Vertex2<T>
impl<T: CoordsFloat> AttributeUpdate for Vertex2<T>
Attribute logic definitions
- MERGING POLICY - The new vertex is placed at the midpoint between the two existing ones.
- SPLITTING POLICY - The current vertex is duplicated.
- (PARTIALLY) UNDEFINED ATTRIBUTES MERGING - The default implementations are used.
Source§fn merge(attr1: Self, attr2: Self) -> Self
fn merge(attr1: Self, attr2: Self) -> Self
Merging routine, i.e. how to obtain the new attribute value from the two existing ones.
Source§fn split(attr: Self) -> (Self, Self)
fn split(attr: Self) -> (Self, Self)
Splitting routine, i.e. how to obtain the two attributes from a single one.
Source§fn merge_incomplete(attr: Self) -> Self
fn merge_incomplete(attr: Self) -> Self
Fallback merging routine, i.e. how to obtain the new attribute value from a single existing
value. Read more
Source§fn merge_from_none() -> Option<Self>
fn merge_from_none() -> Option<Self>
Fallback merging routine, i.e. how to obtain the new attribute value from no existing
value. Read more
Source§impl<T: CoordsFloat> Sub for Vertex2<T>
impl<T: CoordsFloat> Sub for Vertex2<T>
Source§impl<T: CoordsFloat> SubAssign<&Vector2<T>> for Vertex2<T>
impl<T: CoordsFloat> SubAssign<&Vector2<T>> for Vertex2<T>
Source§fn sub_assign(&mut self, rhs: &Vector2<T>)
fn sub_assign(&mut self, rhs: &Vector2<T>)
Performs the
-=
operation. Read moreSource§impl<T: CoordsFloat> SubAssign<Vector2<T>> for Vertex2<T>
impl<T: CoordsFloat> SubAssign<Vector2<T>> for Vertex2<T>
Source§fn sub_assign(&mut self, rhs: Vector2<T>)
fn sub_assign(&mut self, rhs: Vector2<T>)
Performs the
-=
operation. Read moreimpl<T: Copy + CoordsFloat> Copy for Vertex2<T>
impl<T: CoordsFloat> Send for Vertex2<T>
impl<T: CoordsFloat> StructuralPartialEq for Vertex2<T>
impl<T: CoordsFloat> Sync for Vertex2<T>
Auto Trait Implementations§
impl<T> Freeze for Vertex2<T>where
T: Freeze,
impl<T> RefUnwindSafe for Vertex2<T>where
T: RefUnwindSafe,
impl<T> Unpin for Vertex2<T>where
T: Unpin,
impl<T> UnwindSafe for Vertex2<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.