honeycomb_core/geometry/dim3/
vertex.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! Custom spatial representation
//!
//! This module contains all code used to model vertices.

use super::super::Vector3;
use crate::prelude::{AttributeBind, AttributeUpdate, OrbitPolicy, Vertex2, VertexIdType};
use crate::{attributes::AttrSparseVec, geometry::CoordsFloat};

/// # 2D vertex structure
///
/// ## Attribute behavior
///
/// - binds to 0-cells,
/// - merge policy: the new vertex is placed at the midpoint between the two existing ones,
/// - split policy: the current vertex is duplicated,
/// - fallback policies: default implementations are used.
///
/// ## Generics
///
/// - `T: CoordsFloat` -- Generic FP type for coordinates.
///
/// ## Example
///
/// ```
/// # use honeycomb_core::prelude::CoordsError;
/// # fn main() -> Result<(), CoordsError> {
/// use honeycomb_core::geometry::{Vector3, Vertex3};
///
/// let v1 = Vertex3(1.0, 0.0, 0.0);
/// let v2 = Vertex3(1.0, 1.0, 1.0);
///
/// assert_eq!(v1.x(), 1.0);
/// assert_eq!(v1.y(), 0.0);
/// assert_eq!(v1.z(), 0.0);
///
/// let two: f64 = 2.0;
/// // vectorAB = vertexB - vertexA
/// let v2_minus_v1: Vector3<f64> = v2 - v1;
///
/// assert_eq!(v2_minus_v1.norm(), two.sqrt());
/// assert_eq!(v2_minus_v1.unit_dir()?, Vector3(0.0, 1.0 / two.sqrt(), 1.0 / two.sqrt()));
///
/// let mut v3 = Vertex3(0.0, 1.0, 1.0);
/// // vertexA + vectorB = vertexA'
/// v3 += v2_minus_v1;
///
/// assert_eq!(v3.x(), 0.0);
/// assert_eq!(v3.y(), 2.0);
/// assert_eq!(v3.z(), 2.0);
///
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, Copy, Default, PartialEq)]
pub struct Vertex3<T: CoordsFloat>(pub T, pub T, pub T);

unsafe impl<T: CoordsFloat> Send for Vertex3<T> {}
unsafe impl<T: CoordsFloat> Sync for Vertex3<T> {}

impl<T: CoordsFloat> Vertex3<T> {
    /// Consume `self` to return inner values.
    pub fn into_inner(self) -> (T, T, T) {
        (self.0, self.1, self.2)
    }

    /// Return the value of the `x` coordinate of the vertex.
    pub fn x(&self) -> T {
        self.0
    }

    /// Return the value of the `y` coordinate of the vertex.
    pub fn y(&self) -> T {
        self.1
    }

    /// Return the value of the `z` coordinate of the vertex.
    pub fn z(&self) -> T {
        self.2
    }

    /// Compute the mid-point between two vertices.
    ///
    /// # Panics
    ///
    /// This function may panic if it cannot initialize an object `T: CoordsFloat` from the value
    /// `2.0`. The chance of this happening when using `T = f64` or `T = f32` is most likely zero.
    ///
    /// # Example
    ///
    /// ```rust
    /// use honeycomb_core::geometry::Vertex3;
    ///
    /// let far_far_away: Vertex3<f64> = Vertex3(2.0, 2.0, 2.0);
    /// let origin: Vertex3<f64> = Vertex3::default();
    ///
    /// assert_eq!(Vertex3::average(&origin, &far_far_away), Vertex3(1.0, 1.0, 1.0));
    /// ```
    pub fn average(lhs: &Vertex3<T>, rhs: &Vertex3<T>) -> Vertex3<T> {
        let two = T::from(2.0).unwrap();
        Vertex3(
            (lhs.0 + rhs.0) / two,
            (lhs.1 + rhs.1) / two,
            (lhs.2 + rhs.2) / two,
        )
    }
}

// Building trait

impl<T: CoordsFloat> From<(T, T, T)> for Vertex3<T> {
    fn from((x, y, z): (T, T, T)) -> Self {
        Self(x, y, z)
    }
}

impl<T: CoordsFloat> From<Vertex2<T>> for Vertex3<T> {
    fn from(v: Vertex2<T>) -> Self {
        Self(v.0, v.1, T::zero())
    }
}

// Basic operations

// -- add flavors

impl<T: CoordsFloat> std::ops::Add<Vector3<T>> for Vertex3<T> {
    // Vertex + Vector = Vertex
    type Output = Self;
    fn add(self, rhs: Vector3<T>) -> Self::Output {
        Self(self.0 + rhs.0, self.1 + rhs.1, self.2 + rhs.2)
    }
}

impl<T: CoordsFloat> std::ops::AddAssign<Vector3<T>> for Vertex3<T> {
    fn add_assign(&mut self, rhs: Vector3<T>) {
        self.0 += rhs.0;
        self.1 += rhs.1;
        self.2 += rhs.2;
    }
}

impl<T: CoordsFloat> std::ops::Add<&Vector3<T>> for Vertex3<T> {
    // Vertex + Vector = Vertex
    type Output = Self;
    fn add(self, rhs: &Vector3<T>) -> Self::Output {
        Self(self.0 + rhs.0, self.1 + rhs.1, self.2 + rhs.2)
    }
}

impl<T: CoordsFloat> std::ops::AddAssign<&Vector3<T>> for Vertex3<T> {
    fn add_assign(&mut self, rhs: &Vector3<T>) {
        self.0 += rhs.0;
        self.1 += rhs.1;
        self.2 += rhs.2;
    }
}

// -- sub flavors
impl<T: CoordsFloat> std::ops::Sub<Vector3<T>> for Vertex3<T> {
    // Vertex - Vector = Vertex
    type Output = Self;
    fn sub(self, rhs: Vector3<T>) -> Self::Output {
        Self(self.0 - rhs.0, self.1 - rhs.1, self.2 - rhs.2)
    }
}

impl<T: CoordsFloat> std::ops::SubAssign<Vector3<T>> for Vertex3<T> {
    fn sub_assign(&mut self, rhs: Vector3<T>) {
        self.0 -= rhs.0;
        self.1 -= rhs.1;
        self.2 -= rhs.2;
    }
}

impl<T: CoordsFloat> std::ops::Sub<&Vector3<T>> for Vertex3<T> {
    // Vertex - Vector = Vertex
    type Output = Self;
    fn sub(self, rhs: &Vector3<T>) -> Self::Output {
        Self(self.0 - rhs.0, self.1 - rhs.1, self.2 - rhs.2)
    }
}

impl<T: CoordsFloat> std::ops::SubAssign<&Vector3<T>> for Vertex3<T> {
    fn sub_assign(&mut self, rhs: &Vector3<T>) {
        self.0 -= rhs.0;
        self.1 -= rhs.1;
        self.2 -= rhs.2;
    }
}

impl<T: CoordsFloat> std::ops::Sub<Vertex3<T>> for Vertex3<T> {
    type Output = Vector3<T>;
    fn sub(self, rhs: Vertex3<T>) -> Self::Output {
        Vector3(self.0 - rhs.0, self.1 - rhs.1, self.2 - rhs.2)
    }
}

impl<T: CoordsFloat> AttributeUpdate for Vertex3<T> {
    fn merge(attr1: Self, attr2: Self) -> Self {
        Self::average(&attr1, &attr2)
    }

    fn split(attr: Self) -> (Self, Self) {
        (attr, attr)
    }
}

impl<T: CoordsFloat> AttributeBind for Vertex3<T> {
    type StorageType = AttrSparseVec<Self>;
    type IdentifierType = VertexIdType;
    const BIND_POLICY: OrbitPolicy = OrbitPolicy::Vertex;
}