honeycomb_core/geometry/dim3/vertex.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
//! Custom spatial representation
//!
//! This module contains all code used to model vertices.
use super::super::Vector3;
use crate::prelude::{AttributeBind, AttributeUpdate, OrbitPolicy, Vertex2, VertexIdType};
use crate::{attributes::AttrSparseVec, geometry::CoordsFloat};
/// # 2D vertex structure
///
/// ## Attribute behavior
///
/// - binds to 0-cells,
/// - merge policy: the new vertex is placed at the midpoint between the two existing ones,
/// - split policy: the current vertex is duplicated,
/// - fallback policies: default implementations are used.
///
/// ## Generics
///
/// - `T: CoordsFloat` -- Generic FP type for coordinates.
///
/// ## Example
///
/// ```
/// # use honeycomb_core::prelude::CoordsError;
/// # fn main() -> Result<(), CoordsError> {
/// use honeycomb_core::geometry::{Vector3, Vertex3};
///
/// let v1 = Vertex3(1.0, 0.0, 0.0);
/// let v2 = Vertex3(1.0, 1.0, 1.0);
///
/// assert_eq!(v1.x(), 1.0);
/// assert_eq!(v1.y(), 0.0);
/// assert_eq!(v1.z(), 0.0);
///
/// let two: f64 = 2.0;
/// // vectorAB = vertexB - vertexA
/// let v2_minus_v1: Vector3<f64> = v2 - v1;
///
/// assert_eq!(v2_minus_v1.norm(), two.sqrt());
/// assert_eq!(v2_minus_v1.unit_dir()?, Vector3(0.0, 1.0 / two.sqrt(), 1.0 / two.sqrt()));
///
/// let mut v3 = Vertex3(0.0, 1.0, 1.0);
/// // vertexA + vectorB = vertexA'
/// v3 += v2_minus_v1;
///
/// assert_eq!(v3.x(), 0.0);
/// assert_eq!(v3.y(), 2.0);
/// assert_eq!(v3.z(), 2.0);
///
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, Copy, Default, PartialEq)]
pub struct Vertex3<T: CoordsFloat>(pub T, pub T, pub T);
unsafe impl<T: CoordsFloat> Send for Vertex3<T> {}
unsafe impl<T: CoordsFloat> Sync for Vertex3<T> {}
impl<T: CoordsFloat> Vertex3<T> {
/// Consume `self` to return inner values.
pub fn into_inner(self) -> (T, T, T) {
(self.0, self.1, self.2)
}
/// Return the value of the `x` coordinate of the vertex.
pub fn x(&self) -> T {
self.0
}
/// Return the value of the `y` coordinate of the vertex.
pub fn y(&self) -> T {
self.1
}
/// Return the value of the `z` coordinate of the vertex.
pub fn z(&self) -> T {
self.2
}
/// Compute the mid-point between two vertices.
///
/// # Panics
///
/// This function may panic if it cannot initialize an object `T: CoordsFloat` from the value
/// `2.0`. The chance of this happening when using `T = f64` or `T = f32` is most likely zero.
///
/// # Example
///
/// ```rust
/// use honeycomb_core::geometry::Vertex3;
///
/// let far_far_away: Vertex3<f64> = Vertex3(2.0, 2.0, 2.0);
/// let origin: Vertex3<f64> = Vertex3::default();
///
/// assert_eq!(Vertex3::average(&origin, &far_far_away), Vertex3(1.0, 1.0, 1.0));
/// ```
pub fn average(lhs: &Vertex3<T>, rhs: &Vertex3<T>) -> Vertex3<T> {
let two = T::from(2.0).unwrap();
Vertex3(
(lhs.0 + rhs.0) / two,
(lhs.1 + rhs.1) / two,
(lhs.2 + rhs.2) / two,
)
}
}
// Building trait
impl<T: CoordsFloat> From<(T, T, T)> for Vertex3<T> {
fn from((x, y, z): (T, T, T)) -> Self {
Self(x, y, z)
}
}
impl<T: CoordsFloat> From<Vertex2<T>> for Vertex3<T> {
fn from(v: Vertex2<T>) -> Self {
Self(v.0, v.1, T::zero())
}
}
// Basic operations
// -- add flavors
impl<T: CoordsFloat> std::ops::Add<Vector3<T>> for Vertex3<T> {
// Vertex + Vector = Vertex
type Output = Self;
fn add(self, rhs: Vector3<T>) -> Self::Output {
Self(self.0 + rhs.0, self.1 + rhs.1, self.2 + rhs.2)
}
}
impl<T: CoordsFloat> std::ops::AddAssign<Vector3<T>> for Vertex3<T> {
fn add_assign(&mut self, rhs: Vector3<T>) {
self.0 += rhs.0;
self.1 += rhs.1;
self.2 += rhs.2;
}
}
impl<T: CoordsFloat> std::ops::Add<&Vector3<T>> for Vertex3<T> {
// Vertex + Vector = Vertex
type Output = Self;
fn add(self, rhs: &Vector3<T>) -> Self::Output {
Self(self.0 + rhs.0, self.1 + rhs.1, self.2 + rhs.2)
}
}
impl<T: CoordsFloat> std::ops::AddAssign<&Vector3<T>> for Vertex3<T> {
fn add_assign(&mut self, rhs: &Vector3<T>) {
self.0 += rhs.0;
self.1 += rhs.1;
self.2 += rhs.2;
}
}
// -- sub flavors
impl<T: CoordsFloat> std::ops::Sub<Vector3<T>> for Vertex3<T> {
// Vertex - Vector = Vertex
type Output = Self;
fn sub(self, rhs: Vector3<T>) -> Self::Output {
Self(self.0 - rhs.0, self.1 - rhs.1, self.2 - rhs.2)
}
}
impl<T: CoordsFloat> std::ops::SubAssign<Vector3<T>> for Vertex3<T> {
fn sub_assign(&mut self, rhs: Vector3<T>) {
self.0 -= rhs.0;
self.1 -= rhs.1;
self.2 -= rhs.2;
}
}
impl<T: CoordsFloat> std::ops::Sub<&Vector3<T>> for Vertex3<T> {
// Vertex - Vector = Vertex
type Output = Self;
fn sub(self, rhs: &Vector3<T>) -> Self::Output {
Self(self.0 - rhs.0, self.1 - rhs.1, self.2 - rhs.2)
}
}
impl<T: CoordsFloat> std::ops::SubAssign<&Vector3<T>> for Vertex3<T> {
fn sub_assign(&mut self, rhs: &Vector3<T>) {
self.0 -= rhs.0;
self.1 -= rhs.1;
self.2 -= rhs.2;
}
}
impl<T: CoordsFloat> std::ops::Sub<Vertex3<T>> for Vertex3<T> {
type Output = Vector3<T>;
fn sub(self, rhs: Vertex3<T>) -> Self::Output {
Vector3(self.0 - rhs.0, self.1 - rhs.1, self.2 - rhs.2)
}
}
impl<T: CoordsFloat> AttributeUpdate for Vertex3<T> {
fn merge(attr1: Self, attr2: Self) -> Self {
Self::average(&attr1, &attr2)
}
fn split(attr: Self) -> (Self, Self) {
(attr, attr)
}
}
impl<T: CoordsFloat> AttributeBind for Vertex3<T> {
type StorageType = AttrSparseVec<Self>;
type IdentifierType = VertexIdType;
const BIND_POLICY: OrbitPolicy = OrbitPolicy::Vertex;
}