honeycomb_kernels/splits/
edge_multiple.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//! standard and no-alloc variants of the `splitn_edge` functions

// ------ IMPORTS

use crate::splits::SplitEdgeError;
use honeycomb_core::cmap::{CMap2, DartIdType, EdgeIdType, NULL_DART_ID};
use honeycomb_core::geometry::CoordsFloat;
// ------ CONTENT

#[allow(clippy::missing_errors_doc)]
/// Split an edge into `n` segments.
///
/// <div class="warning">
/// This implementation is 2D specific.
/// </div>
///
/// # Arguments
///
/// - `cmap: &mut CMap2<T>` -- Reference to the modified map.
/// - `edge_id: EdgeIdentifier` -- Edge to split in two.
/// - `midpoint_vertices: I` -- Relative positions of new vertices, starting from the
///   vertex of the dart sharing `edge_id` as its identifier.
///
/// ## Generics
///
/// - `I: Iterator<Item = T>` -- Iterator over `T` values. These should be in the `]0; 1[` open range.
///
/// # Return / Errors
///
/// This method will return:
/// - `Ok(())` if the operation is successful & the edge was split
/// - `Err(SplitEdgeError)` if the operation fails & the edge is left unchanged. Causes of failure
///   are described in [`SplitEdgeError`]'s documentation.
///
/// # Example
///
/// ```
/// # use honeycomb_core::prelude::{CMap2, CMapBuilder, NULL_DART_ID, Vertex2};
/// # use honeycomb_kernels::splits::splitn_edge;
/// // before
/// //    <--2---
/// //  1         2
/// //    ---1-->
/// let mut map: CMap2<f64> = CMapBuilder::default()
///                             .n_darts(2)
///                             .build()
///                             .unwrap();
/// map.force_link::<2>(1, 2);
/// map.force_write_vertex(1, (0.0, 0.0));
/// map.force_write_vertex(2, (1.0, 0.0));
/// // split
/// assert!(splitn_edge(&mut map, 1, [0.25, 0.50, 0.75]).is_ok());
/// // after
/// //    <-<-<-<
/// //  1 -3-4-5- 2
/// //    >->->->
/// let new_darts = [
///     map.beta::<1>(1),
///     map.beta::<1>(map.beta::<1>(1)),
///     map.beta::<1>(map.beta::<1>(map.beta::<1>(1))),
/// ];
/// assert_eq!(&new_darts, &[3, 4, 5]);
/// assert_eq!(map.force_read_vertex(3), Some(Vertex2(0.25, 0.0)));
/// assert_eq!(map.force_read_vertex(4), Some(Vertex2(0.50, 0.0)));
/// assert_eq!(map.force_read_vertex(5), Some(Vertex2(0.75, 0.0)));
///
/// assert_eq!(map.beta::<1>(1), 3);
/// assert_eq!(map.beta::<1>(3), 4);
/// assert_eq!(map.beta::<1>(4), 5);
/// assert_eq!(map.beta::<1>(5), NULL_DART_ID);
///
/// assert_eq!(map.beta::<1>(2), 6);
/// assert_eq!(map.beta::<1>(6), 7);
/// assert_eq!(map.beta::<1>(7), 8);
/// assert_eq!(map.beta::<1>(8), NULL_DART_ID);
///
/// assert_eq!(map.beta::<2>(1), 8);
/// assert_eq!(map.beta::<2>(3), 7);
/// assert_eq!(map.beta::<2>(4), 6);
/// assert_eq!(map.beta::<2>(5), 2);
/// ```
#[allow(clippy::cast_possible_truncation)]
pub fn splitn_edge<T: CoordsFloat>(
    cmap: &mut CMap2<T>,
    edge_id: EdgeIdType,
    midpoint_vertices: impl IntoIterator<Item = T>,
) -> Result<(), SplitEdgeError> {
    // check pre-allocated darts reqs
    let midpoint_vertices = midpoint_vertices.into_iter().collect::<Vec<_>>();
    let n_t = midpoint_vertices.len();

    // base darts making up the edge
    let base_dart1 = edge_id as DartIdType;
    let base_dart2 = cmap.beta::<2>(base_dart1);

    let new_darts = if base_dart2 == NULL_DART_ID {
        let tmp = cmap.add_free_darts(n_t);
        (tmp..tmp + n_t as DartIdType)
            .chain((0..n_t).map(|_| NULL_DART_ID))
            .collect::<Vec<_>>()
    } else {
        let tmp = cmap.add_free_darts(2 * n_t);
        (tmp..tmp + 2 * n_t as DartIdType).collect::<Vec<_>>()
    };
    // get the first and second halves
    let (darts_fh, darts_sh) = (&new_darts[..n_t], &new_darts[n_t..]);

    inner_splitn(cmap, base_dart1, darts_fh, darts_sh, &midpoint_vertices)
}

#[allow(clippy::missing_errors_doc)]
/// Split an edge into `n` segments.
///
/// <div class="warning">
/// This implementation is 2D specific.
/// </div>
///
/// This method is a variant of [`splitn_edge`] where inline dart allocations are removed. The
/// aim of this variant is to enhance performance by enabling the user to pre-allocate a number
/// of darts.
///
/// The method follows the same logic as the regular [`splitn_edge`], the only difference being
/// that the new darts won't be added to the map on the fly. Instead, the method uses darts
/// passed as argument (`new_darts`) to build the new segments. Consequently, there is no
/// guarantee that IDs will be consistent between this and the regular method.
///
/// # Arguments
///
/// - `cmap: &mut CMap2<T>` -- Reference to the modified map.
/// - `edge_id: EdgeIdentifier` -- Edge to split in two.
/// - `new_darts: &[DartIdentifier]` -- Dart IDs used to build the new segments.
/// - `midpoint_vertices: &[T]` -- Relative positions of new vertices, starting from the
///   vertex of the dart sharing `edge_id` as its identifier.
///
/// ## Dart IDs Requirements & Usage
///
/// Because of the dimension, we can easily compute the number of dart needed to perform this
/// operation. These are the requirements for the darts:
/// - identifiers are passed as a slice:
///   - slice length should verify `new_darts.len() == 2 * midpoint_vertices.len()`
/// - the first half of the slice will always be used if the operation is successful.
/// - the second half of the slice will only be used if the original edge is made of two darts;
///   if that is not the case, the second half IDs can all be `NULL_DART_ID`s.
/// - all of these darts should be free
///
/// # Return / Errors
///
/// This method will return:
/// - `Ok(())` if the operation is successful & the edge was split
/// - `Err(SplitEdgeError)` if the operation fails & the edge is left unchanged. Causes of failure
///   are described in [`SplitEdgeError`]'s documentation and in requirements mentionned above.
pub fn splitn_edge_no_alloc<T: CoordsFloat>(
    cmap: &mut CMap2<T>,
    edge_id: EdgeIdType,
    new_darts: &[DartIdType],
    midpoint_vertices: &[T],
) -> Result<(), SplitEdgeError> {
    // check pre-allocated darts reqs
    let n_t = midpoint_vertices.len();
    let n_d = new_darts.len();
    if n_d != 2 * n_t {
        return Err(SplitEdgeError::WrongAmountDarts(2 * n_t, n_d));
    }
    if new_darts.iter().any(|d| !cmap.is_free(*d)) {
        return Err(SplitEdgeError::InvalidDarts("one dart is not free"));
    }
    // get the first and second halves
    let darts_fh = &new_darts[..n_t];
    let darts_sh = &new_darts[n_t..];

    // base darts making up the edge
    let base_dart1 = edge_id as DartIdType;
    let base_dart2 = cmap.beta::<2>(base_dart1);

    if darts_fh.iter().any(|d| *d == NULL_DART_ID) {
        return Err(SplitEdgeError::InvalidDarts(
            "one dart of the first half is null",
        ));
    }
    if base_dart2 != NULL_DART_ID && darts_sh.iter().any(|d| *d == NULL_DART_ID) {
        return Err(SplitEdgeError::InvalidDarts(
            "one dart of the second half is null",
        ));
    }

    inner_splitn(cmap, base_dart1, darts_fh, darts_sh, midpoint_vertices)
}

// --- common inner routine

fn inner_splitn<T: CoordsFloat>(
    cmap: &mut CMap2<T>,
    base_dart1: DartIdType,
    darts_fh: &[DartIdType], //first half
    darts_sh: &[DartIdType], //second half
    midpoint_vertices: &[T],
) -> Result<(), SplitEdgeError> {
    if midpoint_vertices
        .iter()
        .any(|t| (*t >= T::one()) | (*t <= T::zero()))
    {
        return Err(SplitEdgeError::VertexBound);
    }

    let base_dart2 = cmap.beta::<2>(base_dart1);
    let b1d1_old = cmap.beta::<1>(base_dart1);

    let (Some(v1), Some(v2)) = (
        cmap.force_read_vertex(cmap.vertex_id(base_dart1)),
        cmap.force_read_vertex(cmap.vertex_id(if base_dart2 == NULL_DART_ID {
            b1d1_old
        } else {
            base_dart2
        })),
    ) else {
        return Err(SplitEdgeError::UndefinedEdge);
    };
    let seg = v2 - v1;

    // unsew current dart
    // self.one_unlink(base_dart1);
    cmap.set_beta::<1>(base_dart1, 0);
    cmap.set_beta::<0>(b1d1_old, 0);
    if base_dart2 != NULL_DART_ID {
        cmap.force_unlink::<2>(base_dart1);
    }
    // insert new vertices / darts on base_dart1's side
    let mut prev_d = base_dart1;
    midpoint_vertices
        .iter()
        .zip(darts_fh.iter())
        .for_each(|(&t, &new_d)| {
            if (t >= T::one()) | (t <= T::zero()) {
                // println!("{W_VERTEX_BOUND}");
            }
            let new_v = v1 + seg * t;
            cmap.force_link::<1>(prev_d, new_d);
            cmap.force_write_vertex(new_d, new_v);
            prev_d = new_d;
        });
    cmap.force_link::<1>(prev_d, b1d1_old);

    // if b2(base_dart1) is defined, insert vertices / darts on its side too
    if base_dart2 != NULL_DART_ID {
        let b1d2_old = cmap.beta::<1>(base_dart2);
        // self.one_unlink(base_dart2);
        cmap.set_beta::<1>(base_dart2, 0);
        cmap.set_beta::<0>(b1d2_old, 0);
        let mut prev_d = base_dart2;
        darts_fh
            .iter()
            .rev()
            .zip(darts_sh.iter())
            .for_each(|(d, new_d)| {
                cmap.force_link::<2>(prev_d, *d);
                cmap.force_link::<1>(prev_d, *new_d);
                prev_d = *new_d;
            });
        cmap.force_link::<1>(prev_d, b1d2_old);
        cmap.force_link::<2>(prev_d, base_dart1);
    }

    Ok(())
}