honeycomb_kernels/grisubal/routines/compute_intersecs.rs
1//! Step 1 implementation
2//!
3//! The aim of this step is to build an exhaustive list of the segments making up
4//! the geometry intersected with the grid: For each segment, if both vertices
5//! do not belong to the same cell, we break it into sub-segments until it is the case.
6
7use std::{
8 cmp::{max, min},
9 collections::VecDeque,
10};
11
12use honeycomb_core::cmap::{CMap2, DartIdType, NULL_DART_ID};
13use honeycomb_core::geometry::{CoordsFloat, Vertex2};
14
15use crate::grisubal::model::{Geometry2, GeometryVertex, GridCellId};
16
17use super::Segments;
18
19macro_rules! make_geometry_vertex {
20 ($g: ident, $vid: ident) => {
21 if $g.poi.contains(&$vid) {
22 GeometryVertex::PoI($vid)
23 } else {
24 GeometryVertex::Regular($vid)
25 }
26 };
27}
28
29macro_rules! left_intersec {
30 ($va: ident, $vb: ident, $vdart:ident, $cy: ident) => {{
31 let s = ($vdart.x() - $va.x()) / ($vb.x() - $va.x());
32 (s, ($vdart.y() - $va.y() - ($vb.y() - $va.y()) * s) / $cy)
33 }};
34}
35
36macro_rules! right_intersec {
37 ($va: ident, $vb: ident, $vdart:ident, $cy: ident) => {{
38 let s = ($vdart.x() - $va.x()) / ($vb.x() - $va.x());
39 (s, (($vb.y() - $va.y()) * s - ($vdart.y() - $va.y())) / $cy)
40 }};
41}
42
43macro_rules! down_intersec {
44 ($va: ident, $vb: ident, $vdart:ident, $cx: ident) => {{
45 let s = ($vdart.y() - $va.y()) / ($vb.y() - $va.y());
46 (s, (($vb.x() - $va.x()) * s - ($vdart.x() - $va.x())) / $cx)
47 }};
48}
49
50macro_rules! up_intersec {
51 ($va: ident, $vb: ident, $vdart:ident, $cx: ident) => {{
52 let s = ($vdart.y() - $va.y()) / ($vb.y() - $va.y());
53 (s, (($vdart.x() - $va.x()) - ($vb.x() - $va.x()) * s) / $cx)
54 }};
55}
56
57#[allow(
58 clippy::too_many_lines,
59 clippy::cast_possible_truncation,
60 clippy::cast_possible_wrap,
61 clippy::cast_sign_loss
62)]
63pub(crate) fn generate_intersection_data<T: CoordsFloat>(
64 cmap: &CMap2<T>,
65 geometry: &Geometry2<T>,
66 [nx, _ny]: [usize; 2],
67 [cx, cy]: [T; 2],
68 origin: Vertex2<T>,
69) -> (Segments, Vec<(DartIdType, T)>) {
70 let tmp: Vec<_> = geometry
71 .segments
72 .iter()
73 .map(|&(v1_id, v2_id)| {
74 // fetch vertices of the segment
75 let Vertex2(ox, oy) = origin;
76 let (v1, v2) = (&geometry.vertices[v1_id], &geometry.vertices[v2_id]);
77 // compute their position in the grid
78 // we assume that the origin of the grid is at (0., 0.)
79 let (c1, c2) = (
80 GridCellId(
81 ((v1.x() - ox) / cx).floor().to_usize().unwrap(),
82 ((v1.y() - oy) / cy).floor().to_usize().unwrap(),
83 ),
84 GridCellId(
85 ((v2.x() - ox) / cx).floor().to_usize().unwrap(),
86 ((v2.y() - oy) / cy).floor().to_usize().unwrap(),
87 ),
88 );
89 (
90 GridCellId::l1_dist(&c1, &c2),
91 GridCellId::offset(&c1, &c2),
92 v1,
93 v2,
94 v1_id,
95 v2_id,
96 c1,
97 )
98 })
99 .collect();
100 // total number of intersection
101 let n_intersec: usize = tmp.iter().map(|(dist, _, _, _, _, _, _)| dist).sum();
102 // we're using the prefix sum to compute an offset from the start. that's why we need a 0 at the front
103 // we'll cut off the last element later
104 let prefix_sum = tmp
105 .iter()
106 .map(|(dist, _, _, _, _, _, _)| dist)
107 .scan(0, |state, &dist| {
108 *state += dist;
109 Some(*state - dist) // we want an offset, not the actual sum
110 });
111 // preallocate the intersection vector
112 let mut intersection_metadata = vec![(NULL_DART_ID, T::nan()); n_intersec];
113
114 let new_segments: Segments = tmp.iter().zip(prefix_sum).flat_map(|(&(dist, diff, v1, v2, v1_id, v2_id, c1), start)| {
115 let transform = Box::new(|seg: &[GeometryVertex]| {
116 assert_eq!(seg.len(), 2);
117 (seg[0].clone(), seg[1].clone())
118 });
119 // check neighbor status
120 match dist {
121 // trivial case:
122 // v1 & v2 belong to the same cell
123 0 => {
124 vec![(make_geometry_vertex!(geometry, v1_id), make_geometry_vertex!(geometry, v2_id))]
125 }
126 // ok case:
127 // v1 & v2 belong to neighboring cells
128 1 => {
129 // fetch base dart of the cell of v1
130 #[allow(clippy::cast_possible_truncation)]
131 let d_base = (1 + 4 * c1.0 + nx * 4 * c1.1) as DartIdType;
132 // which dart does this correspond to?
133 #[rustfmt::skip]
134 let dart_id = match diff {
135 (-1, 0) => d_base + 3,
136 ( 1, 0) => d_base + 1,
137 ( 0, -1) => d_base ,
138 ( 0, 1) => d_base + 2,
139 _ => unreachable!(),
140 };
141 // what's the vertex associated to the dart?
142 let v_dart = cmap
143 .force_read_vertex(cmap.vertex_id(dart_id))
144 .expect("E: found a topological vertex with no associated coordinates");
145 // compute relative position of the intersection on the intersecting edges
146 // `s` is relative to the segment `v1v2`, `t` to the grid's segment (the origin being `v_dart`)
147 #[rustfmt::skip]
148 let (_s, t) = match diff {
149 (-1, 0) => left_intersec!(v1, v2, v_dart, cy),
150 ( 1, 0) => right_intersec!(v1, v2, v_dart, cy),
151 ( 0, -1) => down_intersec!(v1, v2, v_dart, cx),
152 ( 0, 1) => up_intersec!(v1, v2, v_dart, cx),
153 _ => unreachable!(),
154 };
155
156 let id = start;
157 intersection_metadata[id] = (dart_id, t);
158
159 vec![
160 (make_geometry_vertex!(geometry, v1_id), GeometryVertex::Intersec(id)),
161 (GeometryVertex::Intersec(id), make_geometry_vertex!(geometry, v2_id)),
162 ]
163 }
164 // highly annoying case:
165 // v1 & v2 do not belong to neighboring cell
166 _ => {
167 // pure vertical / horizontal traversal are treated separately because it ensures we're not trying
168 // to compute intersections of parallel segments (which results at best in a division by 0)
169 let i_ids = start..start+dist;
170 match diff {
171 (i, 0) => {
172 // we can solve the intersection equation
173 // for each vertical edge of the grid we cross (i times)
174 let i_base = c1.0 as isize;
175 let tmp =
176 // the range is either
177 // i > 0: i_base..i_base + i
178 // or
179 // i < 0: i_base + 1 + i..i_base + 1
180 (min(i_base, i_base + 1 + i)..max(i_base + i, i_base + 1)).zip(i_ids).map(|(x, id)| {
181 // cell base dart
182 let d_base =
183 (1 + 4 * x + (nx * 4 * c1.1) as isize) as DartIdType;
184 // intersected dart
185 let dart_id = if i.is_positive() {
186 d_base + 1
187 } else {
188 d_base + 3
189 };
190 // vertex associated to the intersected dart
191 let v_dart = cmap.force_read_vertex(cmap.vertex_id(dart_id))
192 .expect("E: found a topological vertex with no associated coordinates");
193 // compute intersection
194 let (_s, t) = if i.is_positive() {
195 right_intersec!(v1, v2, v_dart, cy)
196 } else {
197 left_intersec!(v1, v2, v_dart, cy)
198 };
199
200 intersection_metadata[id] = (dart_id, t);
201
202 GeometryVertex::Intersec(id)
203 });
204
205 // because of how the range is written, we need to reverse the iterator in one case
206 // to keep intersection ordered from v1 to v2 (i.e. ensure the segments we build are correct)
207 let mut vs: VecDeque<GeometryVertex> = if i > 0 {
208 tmp.collect()
209 } else {
210 tmp.rev().collect()
211 };
212
213 // complete the vertex list
214 vs.push_front(make_geometry_vertex!(geometry, v1_id));
215 vs.push_back(make_geometry_vertex!(geometry, v2_id));
216
217 vs.make_contiguous()
218 .windows(2)
219 .map(transform)
220 .collect::<Vec<_>>()
221 }
222 (0, j) => {
223 // we can solve the intersection equation
224 // for each horizontal edge of the grid we cross (j times)
225 let j_base = c1.1 as isize;
226 let tmp =
227 // the range is either
228 // j > 0: j_base..j_base + j
229 // or
230 // j < 0: j_base + 1 + j..j_base + 1
231 (min(j_base, j_base + 1 + j)..max(j_base + j, j_base + 1)).zip(i_ids).map(|(y, id)| {
232 // cell base dart
233 let d_base = (1 + 4 * c1.0 + nx * 4 * y as usize) as DartIdType;
234 // intersected dart
235 let dart_id = if j.is_positive() { d_base + 2 } else { d_base };
236 // vertex associated to the intersected dart
237 let v_dart = cmap.force_read_vertex(cmap.vertex_id(dart_id))
238 .expect("E: found a topological vertex with no associated coordinates");
239 // compute intersection
240 let (_s, t) = if j.is_positive() {
241 up_intersec!(v1, v2, v_dart, cx)
242 } else {
243 down_intersec!(v1, v2, v_dart, cx)
244 };
245
246 intersection_metadata[id] = (dart_id, t);
247
248 GeometryVertex::Intersec(id)
249 });
250
251 // because of how the range is written, we need to reverse the iterator in one case
252 // to keep intersection ordered from v1 to v2 (i.e. ensure the segments we build are correct)
253 let mut vs: VecDeque<GeometryVertex> = if j > 0 {
254 tmp.collect()
255 } else {
256 tmp.rev().collect()
257 };
258
259 // complete the vertex list
260 vs.push_front(make_geometry_vertex!(geometry, v1_id));
261 vs.push_back(make_geometry_vertex!(geometry, v2_id));
262
263 vs.make_contiguous()
264 .windows(2)
265 .map(transform)
266 .collect::<Vec<_>>()
267 }
268 (i, j) => {
269 // in order to process this, we'll consider a "sub-grid" & use the direction of the segment to
270 // deduce which pair of dart we are supposed to intersect
271 // we also have to consider corner traversal; this corresponds to intersecting both darts of
272 // the pair at respective relative positions 1 and 0 (or 0 and 1)
273 let i_base = c1.0 as isize;
274 let j_base = c1.1 as isize;
275 let i_cell_range = min(i_base, i_base + i)..=max(i_base + i, i_base);
276 let j_cell_range = min(j_base, j_base + j)..=max(j_base + j, j_base);
277 let subgrid_cells =
278 i_cell_range.flat_map(|x| j_cell_range.clone().map(move |y| (x, y)));
279
280 let mut intersec_data: Vec<(T, T, DartIdType)> = subgrid_cells
281 .map(|(x, y)| {
282 // cell base dart
283 let d_base = (1 + 4 * x + nx as isize * 4 * y) as DartIdType;
284 // (potentially) intersected darts
285 let vdart_id = if i.is_positive() {
286 d_base + 1
287 } else {
288 d_base + 3
289 };
290 let hdart_id = if j.is_positive() { d_base + 2 } else { d_base };
291 // associated vertices
292 let v_vdart = cmap.force_read_vertex(cmap.vertex_id(vdart_id))
293 .expect("E: found a topological vertex with no associated coordinates");
294 let v_hdart = cmap.force_read_vertex(cmap.vertex_id(hdart_id))
295 .expect("E: found a topological vertex with no associated coordinates");
296 // compute (potential) intersections
297 let v_coeffs = if i.is_positive() {
298 right_intersec!(v1, v2, v_vdart, cy)
299 } else {
300 left_intersec!(v1, v2, v_vdart, cy)
301 };
302 let h_coeffs = if j.is_positive() {
303 up_intersec!(v1, v2, v_hdart, cx)
304 } else {
305 down_intersec!(v1, v2, v_hdart, cx)
306 };
307
308 (hdart_id, vdart_id, v_coeffs, h_coeffs)
309 })
310 .filter_map(|(hdart_id, vdart_id, (vs, vt), (hs, ht))| {
311 let zero = T::zero();
312 let one = T::one();
313 // there is one corner intersection to check per (i, j) quadrant
314 match (i.is_positive(), j.is_positive()) {
315 // check
316 (true, true) | (false, false) => {
317 if ((vt - one).abs() < T::epsilon())
318 && (ht.abs() < T::epsilon())
319 {
320 return Some((hs, zero, hdart_id));
321 }
322 }
323 (false, true) | (true, false) => {
324 if (vt.abs() < T::epsilon())
325 && ((ht - one).abs() < T::epsilon())
326 {
327 return Some((vs, zero, vdart_id));
328 }
329 }
330 }
331
332 // we can deduce if and which side is intersected using s and t values
333 // these should be comprised strictly between 0 and 1 for regular intersections
334 if (T::epsilon() <= vs)
335 & (vs <= one - T::epsilon())
336 & (T::epsilon() <= vt)
337 & (vt <= one - T::epsilon())
338 {
339 return Some((vs, vt, vdart_id)); // intersect vertical side
340 }
341 if (T::epsilon() < hs)
342 & (hs <= one - T::epsilon())
343 & (T::epsilon() <= ht)
344 & (ht <= one - T::epsilon())
345 {
346 return Some((hs, ht, hdart_id)); // intersect horizontal side
347 }
348
349 // intersect none; this is possible since we're looking at cells of a subgrid,
350 // not following through the segment's intersections
351 None
352 })
353 .collect();
354
355 // sort intersections from v1 to v2
356 intersec_data.retain(|(s, _, _)| (T::zero() <= *s) && (*s <= T::one()));
357 // panic unreachable because of the retain above; there's no s s.t. s == NaN
358 intersec_data.sort_by(|(s1, _, _), (s2, _, _)| s1.partial_cmp(s2)
359 .expect("E: unreachable"));
360
361 // collect geometry vertices
362 let mut vs = vec![make_geometry_vertex!(geometry, v1_id)];
363 vs.extend(intersec_data.iter_mut().zip(i_ids).map(|((_, t, dart_id), id)| {
364 if t.is_zero() {
365 // we assume that the segment fully goes through the corner and does not land exactly
366 // on it, this allows us to compute directly the dart from which the next segment
367 // should start: the one incident to the vertex in the opposite quadrant
368
369 // in that case, the preallocated intersection metadata slot will stay as (0, Nan)
370 // this is ok, we can simply ignore the entry when processing the data later
371
372 let dart_in = *dart_id;
373 GeometryVertex::IntersecCorner(dart_in)
374 } else {
375 intersection_metadata[id] = (*dart_id, *t);
376
377 GeometryVertex::Intersec(id)
378 }
379 }));
380
381 vs.push(make_geometry_vertex!(geometry, v2_id));
382
383 vs.windows(2)
384 .map(transform)
385 .collect::<Vec<_>>()
386 }
387 }
388 }
389 }
390 }).collect();
391 (new_segments, intersection_metadata)
392}