honeycomb_kernels/grisubal/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
//! *grisubal* algorithm description & implementation
//!
//! This module contain all code used to implement our grid submersion algorithm, or *grisubal*
//! for short.
//!
//! This algorithm builds the mesh of a geometry by overlapping a grid over it and intersecting
//! the grid with the geometry. It is inspired by the approach described in
//! [this](https://internationalmeshingroundtable.com/assets/research-notes/imr32/2011.pdf)
//! research note.
//!
//! # Assumptions / Hypotheses
//!
//! Boundaries are consistently oriented, i.e.:
//! - normals of segments making up a boundary all point outward / inward, no mix,
//! - boundaries are closed,
//! - if there are nested boundaries, their orientation are consistent one with the other; this is
//! an extension of the first condition.
//!
//! # Algorithm
//!
//! The steps followed by the algorithm are detailed in the user guide. The following is a summary.
//!
//! ### Pre-processing
//!
//! 1. Compute characteristics of a grid covering the entire geometry, avoiding exact intersection
//! between the grid's segments and the geometry's vertices.
//! 2. Remove "redundant" Points of Interest to avoid duplicated vertices.
//! 3. Check for obvious orientation issues (open geometry & orientation per boundary).
//!
//! ### Main kernel
//!
//! 1. Compute intersection vertices between the geometry's segments and the grid.
//! 2. Insert given intersections into the grid.
//! 3. Build new edge data by searching through the original segments.
//! 4. Insert new edges into the map. Mark darts on each side of the edge with the `Boundary`
//! attribute.
//!
//! ### Post-processing clip
//!
//! Depending on the specified argument, one side (or the other) of the boundary can be clipped.
//! This is specified using the [`Clip`] enum; The following steps describe the operation for
//! [`Clip::Left`]:
//!
//! 1. Fetch all darts marked as `Boundary::Left` during the last step of the main kernel.
//! 2. Use these darts' faces as starting point for a coloring algorithm. The search is done using
//! a BFS and only consider adjacent faces if the adjacent dart isn't marked as a boundary.
//! This step is also used to check for orientation inconsistencies, most importantly orientation
//! across distinct boundaries.
//! 3. Delete all darts making up the marked faces.
//!
//! The `Boundary` attribute is then removed from the map before return.
// ------ MODULE DECLARATIONS
pub(crate) mod model;
pub(crate) mod routines;
pub(crate) mod timers;
// ------ IMPORTS
use crate::grisubal::{
model::{Boundary, Geometry2},
routines::{
clip_left, clip_right, compute_intersection_ids, compute_overlapping_grid,
detect_orientation_issue, generate_edge_data, generate_intersection_data,
group_intersections_per_edge, insert_edges_in_map, insert_intersections,
remove_redundant_poi,
},
timers::{finish, start_timer, unsafe_time_section},
};
use honeycomb_core::{
cmap::{CMapBuilder, GridDescriptor},
prelude::{CMap2, CoordsFloat},
};
use thiserror::Error;
use vtkio::Vtk;
// ------ CONTENT
/// Post-processing clip operation.
///
/// Note that the part of the map that is clipped depends on the orientation of the original geometry provided as
/// input.
#[derive(Default)]
pub enum Clip {
/// Clip elements located on the left side of the oriented boundary.
Left,
/// Clip elements located on the right side of the oriented boundary.
Right,
/// Keep all elements. Default value.
#[default]
None,
}
#[derive(Error, Debug)]
/// Enum used to model potential errors of the `grisubal` kernel.
///
/// Each variant has an associated message that details more precisely what was detected.
pub enum GrisubalError {
/// An orientation issue has been detected in the input geometry.
#[error("boundary isn't consistently oriented - {0}")]
InconsistentOrientation(&'static str),
/// The specified geometry does not match one (or more) requirements of the algorithm.
#[error("input shape isn't conform to requirements - {0}")]
InvalidShape(&'static str),
/// The VTK file used to try to build a `Geometry2` object contains invalid data
/// (per VTK's specification).
#[error("invalid/corrupted data in the vtk file - {0}")]
BadVtkData(&'static str),
/// The VTK file used to try to build a `Geometry2` object contains valid but unsupported data.
#[error("unsupported data in the vtk file - {0}")]
UnsupportedVtkData(&'static str),
}
#[allow(clippy::missing_errors_doc)]
/// Main algorithm call function.
///
/// # Arguments
///
/// - `file_path: impl AsRef<Path>` -- Path to a VTK file describing input geometry.
/// - `grid_cell_sizes: [T; 2],` -- Desired grid cell size along the X/Y axes.
/// - `clip: Option<Clip>` -- Indicates which part of the map should be clipped, if any, in
/// the post-processing phase.
///
///
/// At the moment, the input geometry should be specified via a file under the VTK Legacy format.
/// Just like the `io` feature provided in the core crate, there are a few additional requirements
/// for the geometry to be loaded correctly:
/// - The geometry should have a consistent orientation, i.e. the order in which the points are
/// given should form normals with a consistent direction (either pointing inward or outward the
/// geometry).
/// - The geometry should be described using in an `UnstructuredGrid` data set, with supported
/// cell types (`Vertex`, `Line`). Lines will be interpreted as the boundary to intersect while
/// vertices will be considered as points of interests.
///
/// # Return / Errors
///
/// This function returns a `Result` taking the following values:
/// - `Ok(CMap2)` -- Algorithm ran successfully.
/// - `Err(GrisubalError)` -- Algorithm encountered an issue. See [`GrisubalError`] for all
/// possible errors.
///
/// # Panics
///
/// This function may panic if the specified file cannot be opened.
///
/// # Example
///
/// ```no_run
/// # use honeycomb_core::prelude::CMap2;
/// # use honeycomb_kernels::grisubal::*;
/// # fn main() -> Result<(), GrisubalError>{
/// let cmap: CMap2<f64> = grisubal("some/path/to/geometry.vtk", [1., 1.], Clip::default())?;
/// # Ok(())
/// # }
/// ```
#[allow(clippy::needless_pass_by_value)]
pub fn grisubal<T: CoordsFloat>(
file_path: impl AsRef<std::path::Path>,
grid_cell_sizes: [T; 2],
clip: Clip,
) -> Result<CMap2<T>, GrisubalError> {
// INIT TIMER
start_timer!(instant);
// --- IMPORT VTK INPUT
let geometry_vtk = match Vtk::import(file_path) {
Ok(vtk) => vtk,
Err(e) => panic!("E: could not open specified vtk file - {e}"),
};
unsafe_time_section!(instant, timers::Section::ImportVTK);
//----/
// --- BUILD OUR MODEL FROM THE VTK IMPORT
let mut geometry = Geometry2::try_from(geometry_vtk)?;
unsafe_time_section!(instant, timers::Section::BuildGeometry);
//----/
// --- FIRST DETECTION OF ORIENTATION ISSUES
detect_orientation_issue(&geometry)?;
unsafe_time_section!(instant, timers::Section::DetectOrientation);
//----/
// --- FIND AN OVERLAPPING GRID
let ([nx, ny], origin) = compute_overlapping_grid(&geometry, grid_cell_sizes)?;
let [cx, cy] = grid_cell_sizes;
let ogrid = GridDescriptor::default()
.n_cells_x(nx)
.n_cells_y(ny)
.len_per_cell_x(cx)
.len_per_cell_y(cy)
.origin(origin);
unsafe_time_section!(instant, timers::Section::ComputeOverlappingGrid);
//----/
// --- REMOVE REDUNDANT PoIs
remove_redundant_poi(&mut geometry, grid_cell_sizes, origin);
unsafe_time_section!(instant, timers::Section::RemoveRedundantPoi);
//----/
// ------ START MAIN KERNEL TIMER
start_timer!(kernel);
// --- BUILD THE GRID
let mut cmap = CMapBuilder::default()
.grid_descriptor(ogrid)
.add_attribute::<Boundary>() // will be used for clipping
.build()
.expect("E: unreachable"); // unreachable because grid dims are valid
unsafe_time_section!(instant, timers::Section::BuildMeshInit);
//----/
// process the geometry
// --- STEP 1 & 2
// (1)
let (new_segments, intersection_metadata) =
generate_intersection_data(&cmap, &geometry, [nx, ny], [cx, cy], origin);
// (2)
let n_intersec = intersection_metadata.len();
let (edge_intersec, dart_slices) =
group_intersections_per_edge(&mut cmap, intersection_metadata);
let intersection_darts = compute_intersection_ids(n_intersec, &edge_intersec, &dart_slices);
unsafe_time_section!(instant, timers::Section::BuildMeshIntersecData);
//----/
// --- STEP 3
insert_intersections(&mut cmap, &edge_intersec, &dart_slices);
unsafe_time_section!(instant, timers::Section::BuildMeshInsertIntersec);
//----/
// --- STEP 4
let edges = generate_edge_data(&cmap, &geometry, &new_segments, &intersection_darts);
unsafe_time_section!(instant, timers::Section::BuildMeshEdgeData);
//----/
// --- STEP 5
insert_edges_in_map(&mut cmap, &edges);
unsafe_time_section!(instant, timers::Section::BuildMeshInsertEdge);
//----/
unsafe_time_section!(kernel, timers::Section::BuildMeshTot);
//-------/
// --- CLIP
match clip {
Clip::Left => clip_left(&mut cmap)?,
Clip::Right => clip_right(&mut cmap)?,
Clip::None => {}
}
unsafe_time_section!(instant, timers::Section::Clip);
//----/
// CLEANUP
cmap.remove_attribute_storage::<Boundary>();
finish!(instant);
//-/
Ok(cmap)
}
// ------ TESTS
#[cfg(test)]
mod tests;