honeycomb_core/geometry/dim3/
vector.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
use crate::prelude::{CoordsError, CoordsFloat, Vector2};

/// # 3D vector structure
///
/// ## Generics
///
/// - `T: CoordsFloat` -- Generic FP type for coordinates.
///
/// ## Example
///
/// ```
/// # use honeycomb_core::prelude::CoordsError;
/// # fn main() -> Result<(), CoordsError> {
/// use honeycomb_core::geometry::Vector3;
///
/// let unit_x = Vector3::unit_x();
/// let unit_y = Vector3::unit_y();
/// let unit_z = Vector3::unit_z();
///
/// assert_eq!(unit_x.dot(&unit_y), 0.0);
/// assert_eq!(unit_x.cross(&unit_y), unit_z);
///
/// let sum: Vector3<f64> = unit_x + unit_y + unit_z;
///
/// assert_eq!(sum.norm(), 3.0_f64.sqrt());
/// assert_eq!(
///     sum.unit_dir()?,
///     Vector3(
///         1.0 / 3.0_f64.sqrt(),
///         1.0 / 3.0_f64.sqrt(),
///         1.0 / 3.0_f64.sqrt(),
///     ),
/// );
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, Copy, Default, PartialEq)]
pub struct Vector3<T: CoordsFloat>(pub T, pub T, pub T);

unsafe impl<T: CoordsFloat> Send for Vector3<T> {}
unsafe impl<T: CoordsFloat> Sync for Vector3<T> {}

impl<T: CoordsFloat> Vector3<T> {
    /// Return a unit vector along the `x` axis.
    #[must_use = "unused return value"]
    pub fn unit_x() -> Self {
        Self(T::one(), T::zero(), T::zero())
    }

    /// Return a unit vector along the `y` axis.
    #[must_use = "unused return value"]
    pub fn unit_y() -> Self {
        Self(T::zero(), T::one(), T::zero())
    }

    /// Return a unit vector along the `z` axis.
    #[must_use = "unused return value"]
    pub fn unit_z() -> Self {
        Self(T::zero(), T::zero(), T::one())
    }

    /// Consume `self` to return inner values.
    pub fn into_inner(self) -> (T, T, T) {
        (self.0, self.1, self.2)
    }

    /// Return the value of the `x` coordinate of the vector.
    pub fn x(&self) -> T {
        self.0
    }

    /// Return the value of the `y` coordinate of the vector.
    pub fn y(&self) -> T {
        self.1
    }

    /// Return the value of the `z` coordinate of the vector.
    pub fn z(&self) -> T {
        self.2
    }

    /// Compute the norm of `self`.
    pub fn norm(&self) -> T {
        (self.0 * self.0 + self.1 * self.1 + self.2 * self.2).sqrt()
    }

    /// Compute the direction of `self` as a unit vector.
    ///
    /// # Errors
    ///
    /// This method will return an error if called on a null `Vector3`.
    pub fn unit_dir(&self) -> Result<Self, CoordsError> {
        let norm = self.norm();
        if norm.is_zero() {
            Err(CoordsError::InvalidUnitDir)
        } else {
            Ok(*self / norm)
        }
    }
    ///Return the dot product between `self` and `other`.
    pub fn dot(&self, other: &Vector3<T>) -> T {
        self.0 * other.0 + self.1 * other.1 + self.2 * other.2
    }

    /// Return the cross product between `self` and `other`.
    #[must_use = "unused return value"]
    pub fn cross(&self, other: &Vector3<T>) -> Self {
        Self(
            self.1 * other.2 - self.2 * other.1,
            self.2 * other.0 - self.0 * other.2,
            self.0 * other.1 - self.1 * other.0,
        )
    }
}

// Building trait

impl<T: CoordsFloat> From<(T, T, T)> for Vector3<T> {
    fn from((x, y, z): (T, T, T)) -> Self {
        Self(x, y, z)
    }
}

impl<T: CoordsFloat> From<Vector2<T>> for Vector3<T> {
    fn from(v: Vector2<T>) -> Self {
        Self(v.0, v.1, T::zero())
    }
}

// Basic operations

impl<T: CoordsFloat> std::ops::Add<Vector3<T>> for Vector3<T> {
    type Output = Self;
    fn add(self, rhs: Vector3<T>) -> Self::Output {
        Self(self.0 + rhs.0, self.1 + rhs.1, self.2 + rhs.2)
    }
}

impl<T: CoordsFloat> std::ops::AddAssign<Vector3<T>> for Vector3<T> {
    fn add_assign(&mut self, rhs: Vector3<T>) {
        self.0 += rhs.0;
        self.1 += rhs.1;
        self.2 += rhs.2;
    }
}

impl<T: CoordsFloat> std::ops::Sub<Vector3<T>> for Vector3<T> {
    type Output = Self;
    fn sub(self, rhs: Vector3<T>) -> Self::Output {
        Self(self.0 - rhs.0, self.1 - rhs.1, self.2 - rhs.2)
    }
}

impl<T: CoordsFloat> std::ops::SubAssign<Vector3<T>> for Vector3<T> {
    fn sub_assign(&mut self, rhs: Vector3<T>) {
        self.0 -= rhs.0;
        self.1 -= rhs.1;
        self.2 -= rhs.2;
    }
}

impl<T: CoordsFloat> std::ops::Mul<T> for Vector3<T> {
    type Output = Self;
    fn mul(self, rhs: T) -> Self::Output {
        Self(self.0 * rhs, self.1 * rhs, self.2 * rhs)
    }
}

impl<T: CoordsFloat> std::ops::MulAssign<T> for Vector3<T> {
    fn mul_assign(&mut self, rhs: T) {
        self.0 *= rhs;
        self.1 *= rhs;
        self.2 *= rhs;
    }
}

impl<T: CoordsFloat> std::ops::Div<T> for Vector3<T> {
    type Output = Self;
    fn div(self, rhs: T) -> Self::Output {
        assert!(!rhs.is_zero());
        Self(self.0 / rhs, self.1 / rhs, self.2 / rhs)
    }
}

impl<T: CoordsFloat> std::ops::DivAssign<T> for Vector3<T> {
    fn div_assign(&mut self, rhs: T) {
        assert!(!rhs.is_zero());
        self.0 /= rhs;
        self.1 /= rhs;
        self.2 /= rhs;
    }
}

impl<T: CoordsFloat> std::ops::Neg for Vector3<T> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        Self(-self.0, -self.1, -self.2)
    }
}