honeycomb_core/geometry/dim2/vector.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
//! Custom spatial representation
//!
//! This module contains all code used to model vectors.
// ------ IMPORTS
use super::super::{CoordsError, CoordsFloat};
// ------ CONTENT
/// 2D vector representation
///
/// # Generics
///
/// - `T: CoordsFloat` -- Generic type for coordinates representation.
///
/// # Example
///
/// ```
/// # use honeycomb_core::prelude::CoordsError;
/// # fn main() -> Result<(), CoordsError> {
/// use honeycomb_core::prelude::Vector2;
///
/// let unit_x = Vector2::unit_x();
/// let unit_y = Vector2::unit_y();
///
/// assert_eq!(unit_x.dot(&unit_y), 0.0);
/// assert_eq!(unit_x.normal_dir()?, unit_y);
///
/// let two: f64 = 2.0;
/// let x_plus_y: Vector2<f64> = unit_x + unit_y;
///
/// assert_eq!(x_plus_y.norm(), two.sqrt());
/// assert_eq!(x_plus_y.unit_dir()?, Vector2(1.0 / two.sqrt(), 1.0 / two.sqrt()));
/// # Ok(())
/// # }
/// ```
///
#[derive(Debug, Clone, Copy, Default, PartialEq)]
pub struct Vector2<T: CoordsFloat>(pub T, pub T);
unsafe impl<T: CoordsFloat> Send for Vector2<T> {}
unsafe impl<T: CoordsFloat> Sync for Vector2<T> {}
impl<T: CoordsFloat> Vector2<T> {
/// Base vector
///
/// # Return
///
/// Return a unit vector along the `x` axis.
///
#[must_use = "constructed object is not used, consider removing this function call"]
pub fn unit_x() -> Self {
Self(T::one(), T::zero())
}
/// Base vector
///
/// # Return
///
/// Return a unit vector along the `y` axis.
///
#[must_use = "constructed object is not used, consider removing this function call"]
pub fn unit_y() -> Self {
Self(T::zero(), T::one())
}
/// Consume `self` to return inner value
///
/// # Return
///
/// Return coordinate values as a simple tuple.
///
pub fn into_inner(self) -> (T, T) {
(self.0, self.1)
}
/// Getter
///
/// # Return
///
/// Return the value of the `x` coordinate of the vector.
///
pub fn x(&self) -> T {
self.0
}
/// Getter
///
/// # Return
///
/// Return the value of the `y` coordinate of the vector.
///
pub fn y(&self) -> T {
self.1
}
/// Compute the norm of `self`.
///
/// # Return
///
/// Return the norm. Its type is the same as the one used for internal
/// representation.
///
/// # Example
///
/// See [Vector2] example.
///
pub fn norm(&self) -> T {
self.0.hypot(self.1)
}
/// Compute the direction of `self` as a unit vector.
///
/// # Return
///
/// Return a [Vector2] indicating the direction of `self`. The norm of the returned
/// struct is equal to one.
///
/// # Errors
///
/// This method will return an error if called on a `Vector2` with a norm equal to zero,
/// i.e. a null `Vector2`.
///
/// # Example
///
/// See [Vector2] example.
///
pub fn unit_dir(&self) -> Result<Self, CoordsError> {
let norm = self.norm();
if norm.is_zero() {
Err(CoordsError::InvalidUnitDir)
} else {
Ok(*self / norm)
}
}
/// Compute the direction of the normal vector to `self`.
///
/// # Return
///
/// Return a [Vector2] indicating the direction of the normal to `self`. The norm of the
/// returned struct is equal to one.
///
/// # Errors
///
/// This method will return an error if called on a `Vector2` with a norm equal to zero,
/// i.e. a null `Vector2`.
///
/// # Example
///
/// See [Vector2] example.
///
pub fn normal_dir(&self) -> Result<Vector2<T>, CoordsError> {
Self(-self.1, self.0)
.unit_dir() // unit(-y, x)
.map_err(|_| CoordsError::InvalidNormDir)
}
/// Compute the dot product between two vectors
///
/// # Arguments
///
/// - `other: &Vector2` -- reference to the second vector.
///
/// # Return
///
/// Return the dot product between `self` and `other`.
///
/// # Example
///
/// See [Vector2] example.
///
pub fn dot(&self, other: &Vector2<T>) -> T {
self.0 * other.0 + self.1 * other.1
}
}
// Building trait
impl<T: CoordsFloat> From<(T, T)> for Vector2<T> {
fn from((x, y): (T, T)) -> Self {
Self(x, y)
}
}
// Basic operations
impl<T: CoordsFloat> std::ops::Add<Vector2<T>> for Vector2<T> {
type Output = Self;
fn add(self, rhs: Vector2<T>) -> Self::Output {
Self(self.0 + rhs.0, self.1 + rhs.1)
}
}
impl<T: CoordsFloat> std::ops::AddAssign<Vector2<T>> for Vector2<T> {
fn add_assign(&mut self, rhs: Vector2<T>) {
self.0 += rhs.0;
self.1 += rhs.1;
}
}
impl<T: CoordsFloat> std::ops::Sub<Vector2<T>> for Vector2<T> {
type Output = Self;
fn sub(self, rhs: Vector2<T>) -> Self::Output {
Self(self.0 - rhs.0, self.1 - rhs.1)
}
}
impl<T: CoordsFloat> std::ops::SubAssign<Vector2<T>> for Vector2<T> {
fn sub_assign(&mut self, rhs: Vector2<T>) {
self.0 -= rhs.0;
self.0 -= rhs.0;
}
}
impl<T: CoordsFloat> std::ops::Mul<T> for Vector2<T> {
type Output = Self;
fn mul(self, rhs: T) -> Self::Output {
Self(self.0 * rhs, self.1 * rhs)
}
}
impl<T: CoordsFloat> std::ops::MulAssign<T> for Vector2<T> {
fn mul_assign(&mut self, rhs: T) {
self.0 *= rhs;
self.1 *= rhs;
}
}
impl<T: CoordsFloat> std::ops::Div<T> for Vector2<T> {
type Output = Self;
fn div(self, rhs: T) -> Self::Output {
assert!(!rhs.is_zero());
Self(self.0 / rhs, self.1 / rhs)
}
}
impl<T: CoordsFloat> std::ops::DivAssign<T> for Vector2<T> {
fn div_assign(&mut self, rhs: T) {
assert!(!rhs.is_zero());
self.0 /= rhs;
self.1 /= rhs;
}
}
impl<T: CoordsFloat> std::ops::Neg for Vector2<T> {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0, -self.1)
}
}