honeycomb_core/geometry/dim2/
vector.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//! Custom spatial representation
//!
//! This module contains all code used to model vectors.

use super::super::{CoordsError, CoordsFloat};

/// # 2D vector structure
///
/// ## Generics
///
/// - `T: CoordsFloat` -- Generic FP type for coordinates.
///
/// ## Example
///
/// ```
/// # use honeycomb_core::prelude::CoordsError;
/// # fn main() -> Result<(), CoordsError> {
/// use honeycomb_core::prelude::Vector2;
///
/// let unit_x = Vector2::unit_x();
/// let unit_y = Vector2::unit_y();
///
/// assert_eq!(unit_x.dot(&unit_y), 0.0);
/// assert_eq!(unit_x.normal_dir()?, unit_y);
///
/// let two: f64 = 2.0;
/// let x_plus_y: Vector2<f64> = unit_x + unit_y;
///
/// assert_eq!(x_plus_y.norm(), two.sqrt());
/// assert_eq!(x_plus_y.unit_dir()?, Vector2(1.0 / two.sqrt(), 1.0 / two.sqrt()));
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, Copy, Default, PartialEq)]
pub struct Vector2<T: CoordsFloat>(pub T, pub T);

unsafe impl<T: CoordsFloat> Send for Vector2<T> {}
unsafe impl<T: CoordsFloat> Sync for Vector2<T> {}

impl<T: CoordsFloat> Vector2<T> {
    /// Return a unit vector along the `x` axis.
    #[must_use = "unused return value"]
    pub fn unit_x() -> Self {
        Self(T::one(), T::zero())
    }

    /// Return a unit vector along the `y` axis.
    #[must_use = "unused return value"]
    pub fn unit_y() -> Self {
        Self(T::zero(), T::one())
    }

    /// Consume `self` to return inner values.
    pub fn into_inner(self) -> (T, T) {
        (self.0, self.1)
    }

    /// Return the value of the `x` coordinate of the vector.
    pub fn x(&self) -> T {
        self.0
    }

    /// Return the value of the `y` coordinate of the vector.
    pub fn y(&self) -> T {
        self.1
    }

    /// Compute the norm of `self`.
    pub fn norm(&self) -> T {
        self.0.hypot(self.1)
    }

    /// Compute the direction of `self` as a unit vector.
    ///
    /// # Errors
    ///
    /// This method will return an error if called on a null `Vector2`.
    pub fn unit_dir(&self) -> Result<Self, CoordsError> {
        let norm = self.norm();
        if norm.is_zero() {
            Err(CoordsError::InvalidUnitDir)
        } else {
            Ok(*self / norm)
        }
    }

    /// Compute the direction of the normal vector to `self` as a unit vector.
    ///
    /// # Errors
    ///
    /// This method will return an error if called on a null `Vector2`.
    pub fn normal_dir(&self) -> Result<Vector2<T>, CoordsError> {
        Self(-self.1, self.0)
            .unit_dir() // unit(-y, x)
            .map_err(|_| CoordsError::InvalidNormDir)
    }

    /// Return the dot product between `self` and `other`.
    pub fn dot(&self, other: &Vector2<T>) -> T {
        self.0 * other.0 + self.1 * other.1
    }
}

// Building trait

impl<T: CoordsFloat> From<(T, T)> for Vector2<T> {
    fn from((x, y): (T, T)) -> Self {
        Self(x, y)
    }
}

// Basic operations

impl<T: CoordsFloat> std::ops::Add<Vector2<T>> for Vector2<T> {
    type Output = Self;

    fn add(self, rhs: Vector2<T>) -> Self::Output {
        Self(self.0 + rhs.0, self.1 + rhs.1)
    }
}

impl<T: CoordsFloat> std::ops::AddAssign<Vector2<T>> for Vector2<T> {
    fn add_assign(&mut self, rhs: Vector2<T>) {
        self.0 += rhs.0;
        self.1 += rhs.1;
    }
}

impl<T: CoordsFloat> std::ops::Sub<Vector2<T>> for Vector2<T> {
    type Output = Self;

    fn sub(self, rhs: Vector2<T>) -> Self::Output {
        Self(self.0 - rhs.0, self.1 - rhs.1)
    }
}

impl<T: CoordsFloat> std::ops::SubAssign<Vector2<T>> for Vector2<T> {
    fn sub_assign(&mut self, rhs: Vector2<T>) {
        self.0 -= rhs.0;
        self.0 -= rhs.0;
    }
}

impl<T: CoordsFloat> std::ops::Mul<T> for Vector2<T> {
    type Output = Self;

    fn mul(self, rhs: T) -> Self::Output {
        Self(self.0 * rhs, self.1 * rhs)
    }
}

impl<T: CoordsFloat> std::ops::MulAssign<T> for Vector2<T> {
    fn mul_assign(&mut self, rhs: T) {
        self.0 *= rhs;
        self.1 *= rhs;
    }
}

impl<T: CoordsFloat> std::ops::Div<T> for Vector2<T> {
    type Output = Self;

    fn div(self, rhs: T) -> Self::Output {
        assert!(!rhs.is_zero());
        Self(self.0 / rhs, self.1 / rhs)
    }
}

impl<T: CoordsFloat> std::ops::DivAssign<T> for Vector2<T> {
    fn div_assign(&mut self, rhs: T) {
        assert!(!rhs.is_zero());
        self.0 /= rhs;
        self.1 /= rhs;
    }
}

impl<T: CoordsFloat> std::ops::Neg for Vector2<T> {
    type Output = Self;

    fn neg(self) -> Self::Output {
        Self(-self.0, -self.1)
    }
}