honeycomb_core/geometry/dim2/vector.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
//! Custom spatial representation
//!
//! This module contains all code used to model vectors.
use super::super::{CoordsError, CoordsFloat};
/// # 2D vector structure
///
/// ## Generics
///
/// - `T: CoordsFloat` -- Generic FP type for coordinates.
///
/// ## Example
///
/// ```
/// # use honeycomb_core::prelude::CoordsError;
/// # fn main() -> Result<(), CoordsError> {
/// use honeycomb_core::prelude::Vector2;
///
/// let unit_x = Vector2::unit_x();
/// let unit_y = Vector2::unit_y();
///
/// assert_eq!(unit_x.dot(&unit_y), 0.0);
/// assert_eq!(unit_x.normal_dir()?, unit_y);
///
/// let two: f64 = 2.0;
/// let x_plus_y: Vector2<f64> = unit_x + unit_y;
///
/// assert_eq!(x_plus_y.norm(), two.sqrt());
/// assert_eq!(x_plus_y.unit_dir()?, Vector2(1.0 / two.sqrt(), 1.0 / two.sqrt()));
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, Copy, Default, PartialEq)]
pub struct Vector2<T: CoordsFloat>(pub T, pub T);
unsafe impl<T: CoordsFloat> Send for Vector2<T> {}
unsafe impl<T: CoordsFloat> Sync for Vector2<T> {}
impl<T: CoordsFloat> Vector2<T> {
/// Return a unit vector along the `x` axis.
#[must_use = "unused return value"]
pub fn unit_x() -> Self {
Self(T::one(), T::zero())
}
/// Return a unit vector along the `y` axis.
#[must_use = "unused return value"]
pub fn unit_y() -> Self {
Self(T::zero(), T::one())
}
/// Consume `self` to return inner values.
pub fn into_inner(self) -> (T, T) {
(self.0, self.1)
}
/// Return the value of the `x` coordinate of the vector.
pub fn x(&self) -> T {
self.0
}
/// Return the value of the `y` coordinate of the vector.
pub fn y(&self) -> T {
self.1
}
/// Compute the norm of `self`.
pub fn norm(&self) -> T {
self.0.hypot(self.1)
}
/// Compute the direction of `self` as a unit vector.
///
/// # Errors
///
/// This method will return an error if called on a null `Vector2`.
pub fn unit_dir(&self) -> Result<Self, CoordsError> {
let norm = self.norm();
if norm.is_zero() {
Err(CoordsError::InvalidUnitDir)
} else {
Ok(*self / norm)
}
}
/// Compute the direction of the normal vector to `self` as a unit vector.
///
/// # Errors
///
/// This method will return an error if called on a null `Vector2`.
pub fn normal_dir(&self) -> Result<Vector2<T>, CoordsError> {
Self(-self.1, self.0)
.unit_dir() // unit(-y, x)
.map_err(|_| CoordsError::InvalidNormDir)
}
/// Return the dot product between `self` and `other`.
pub fn dot(&self, other: &Vector2<T>) -> T {
self.0 * other.0 + self.1 * other.1
}
}
// Building trait
impl<T: CoordsFloat> From<(T, T)> for Vector2<T> {
fn from((x, y): (T, T)) -> Self {
Self(x, y)
}
}
// Basic operations
impl<T: CoordsFloat> std::ops::Add<Vector2<T>> for Vector2<T> {
type Output = Self;
fn add(self, rhs: Vector2<T>) -> Self::Output {
Self(self.0 + rhs.0, self.1 + rhs.1)
}
}
impl<T: CoordsFloat> std::ops::AddAssign<Vector2<T>> for Vector2<T> {
fn add_assign(&mut self, rhs: Vector2<T>) {
self.0 += rhs.0;
self.1 += rhs.1;
}
}
impl<T: CoordsFloat> std::ops::Sub<Vector2<T>> for Vector2<T> {
type Output = Self;
fn sub(self, rhs: Vector2<T>) -> Self::Output {
Self(self.0 - rhs.0, self.1 - rhs.1)
}
}
impl<T: CoordsFloat> std::ops::SubAssign<Vector2<T>> for Vector2<T> {
fn sub_assign(&mut self, rhs: Vector2<T>) {
self.0 -= rhs.0;
self.0 -= rhs.0;
}
}
impl<T: CoordsFloat> std::ops::Mul<T> for Vector2<T> {
type Output = Self;
fn mul(self, rhs: T) -> Self::Output {
Self(self.0 * rhs, self.1 * rhs)
}
}
impl<T: CoordsFloat> std::ops::MulAssign<T> for Vector2<T> {
fn mul_assign(&mut self, rhs: T) {
self.0 *= rhs;
self.1 *= rhs;
}
}
impl<T: CoordsFloat> std::ops::Div<T> for Vector2<T> {
type Output = Self;
fn div(self, rhs: T) -> Self::Output {
assert!(!rhs.is_zero());
Self(self.0 / rhs, self.1 / rhs)
}
}
impl<T: CoordsFloat> std::ops::DivAssign<T> for Vector2<T> {
fn div_assign(&mut self, rhs: T) {
assert!(!rhs.is_zero());
self.0 /= rhs;
self.1 /= rhs;
}
}
impl<T: CoordsFloat> std::ops::Neg for Vector2<T> {
type Output = Self;
fn neg(self) -> Self::Output {
Self(-self.0, -self.1)
}
}