honeycomb_core/cmap/dim2/
serialize.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
use crate::cmap::{EdgeIdType, FaceIdType};
use crate::geometry::CoordsFloat;
use crate::prelude::{CMap2, DartIdType, Orbit2, OrbitPolicy, VertexIdType, NULL_DART_ID};

use std::{any::TypeId, collections::BTreeMap};

use vtkio::{
    model::{
        ByteOrder, CellType, DataSet, Piece, UnstructuredGridPiece, Version, VertexNumbers, Vtk,
    },
    IOBuffer,
};

// --- VTK

/// **Serialization methods**
impl<T: CoordsFloat + 'static> CMap2<T> {
    /// Generate a legacy VTK file from the map.
    ///
    /// # Panics
    ///
    /// This function may panic if the internal writing routine fails, i.e.:
    /// - vertex coordinates cannot be cast to `f32` or `f64`,
    /// - a vertex cannot be found.
    pub fn to_vtk_binary(&self, writer: impl std::io::Write) {
        // build a Vtk structure
        let vtk_struct = Vtk {
            version: Version::Legacy { major: 2, minor: 0 },
            title: "cmap".to_string(),
            byte_order: ByteOrder::BigEndian,
            data: DataSet::UnstructuredGrid {
                meta: None,
                pieces: vec![Piece::Inline(Box::new(build_unstructured_piece(self)))],
            },
            file_path: None,
        };

        // write data to the created file
        vtk_struct
            .write_legacy(writer)
            .expect("E: could not write data to writer");
    }

    /// Generate a legacy VTK file from the map.
    ///
    /// # Panics
    ///
    /// This function may panic if the internal writing routine fails, i.e.:
    /// - vertex coordinates cannot be cast to `f32` or `f64`,
    /// - a vertex cannot be found.
    pub fn to_vtk_ascii(&self, writer: impl std::fmt::Write) {
        // build a Vtk structure
        let vtk_struct = Vtk {
            version: Version::Legacy { major: 2, minor: 0 },
            title: "cmap".to_string(),
            byte_order: ByteOrder::BigEndian,
            data: DataSet::UnstructuredGrid {
                meta: None,
                pieces: vec![Piece::Inline(Box::new(build_unstructured_piece(self)))],
            },
            file_path: None,
        };

        // write data to the created file
        vtk_struct
            .write_legacy_ascii(writer)
            .expect("E: could not write data to writer");
    }
}

/// Internal building routine for VTK serialization.
fn build_unstructured_piece<T>(map: &CMap2<T>) -> UnstructuredGridPiece
where
    T: CoordsFloat + 'static,
{
    // common data
    let vertex_ids: Vec<VertexIdType> = map.iter_vertices().collect();
    let mut id_map: BTreeMap<VertexIdType, usize> = BTreeMap::new();
    vertex_ids.iter().enumerate().for_each(|(id, vid)| {
        id_map.insert(*vid, id);
    });
    // ------ points data
    let vertices = vertex_ids
        .iter()
        .map(|vid| {
            map.force_read_vertex(*vid)
                .expect("E: found a topological vertex with no associated coordinates")
        })
        .flat_map(|v| [v.x(), v.y(), T::zero()].into_iter());
    // ------ cells data
    let mut n_cells = 0;
    // --- faces
    let face_ids: Vec<FaceIdType> = map.iter_faces().collect();
    let face_data = face_ids.into_iter().map(|id| {
        let mut count: u32 = 0;
        // VecDeque will be useful later
        let orbit: Vec<u32> = Orbit2::new(map, OrbitPolicy::Custom(&[1]), id as DartIdType)
            .map(|dart_id| {
                count += 1;
                id_map[&map.vertex_id(dart_id)] as u32
            })
            .collect();
        (count, orbit)
    });

    // --- borders
    let edge_ids: Vec<EdgeIdType> = map.iter_edges().collect();
    // because we do not model boundaries, we can get edges
    // from filtering isolated darts making up edges
    let edge_data = edge_ids
        .into_iter()
        .filter(|id| map.beta::<2>(*id as DartIdType) == NULL_DART_ID)
        .map(|id| {
            let dart_id = id as DartIdType;
            let ndart_id = map.beta::<1>(dart_id);
            (
                id_map[&map.vertex_id(dart_id)] as u32,
                id_map[&map.vertex_id(ndart_id)] as u32,
            )
        });

    // --- corners

    // ------ build VTK data
    let mut cell_vertices: Vec<u32> = Vec::new();
    let mut cell_types: Vec<CellType> = Vec::new();

    edge_data.for_each(|(v1, v2)| {
        cell_types.push(CellType::Line);
        cell_vertices.extend([2_u32, v1, v2]);
        n_cells += 1;
    });

    face_data.for_each(|(count, mut elements)| {
        cell_types.push(match count {
            0..=2 => return, // silent ignore
            3 => CellType::Triangle,
            4 => CellType::Quad,
            5.. => CellType::Polygon,
        });
        cell_vertices.push(count);
        cell_vertices.append(&mut elements);
        n_cells += 1;
    });

    UnstructuredGridPiece {
        points: if TypeId::of::<T>() == TypeId::of::<f32>() {
            IOBuffer::F32(
                vertices
                    .map(|t| t.to_f32().expect("E: unreachable"))
                    .collect(),
            )
        } else if TypeId::of::<T>() == TypeId::of::<f64>() {
            IOBuffer::F64(
                vertices
                    .map(|t| t.to_f64().expect("E: unreachable"))
                    .collect(),
            )
        } else {
            println!("W: unrecognized coordinate type -- cast to f64 might fail");
            IOBuffer::F64(
                vertices
                    .map(|t| t.to_f64().expect("E: unreachable"))
                    .collect(),
            )
        },
        cells: vtkio::model::Cells {
            cell_verts: VertexNumbers::Legacy {
                num_cells: n_cells,
                vertices: cell_vertices,
            },
            types: cell_types,
        },
        data: vtkio::model::Attributes::default(),
    }
}