honeycomb_core/cmap/dim2/
orbits.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//! Orbit implementation
//!
//! This module contains all code used to model orbits, a notion defined
//! along the structure of combinatorial maps.

// ------ IMPORTS

use crate::geometry::CoordsFloat;
use crate::prelude::{CMap2, DartIdType, NULL_DART_ID};

use std::collections::{BTreeSet, VecDeque};

// ------ CONTENT

/// Orbit search policy enum.
///
/// This is used to define special cases of orbits that are often used in
/// algorithms. These special cases correspond to *i-cells*.
#[derive(Debug, PartialEq)]
pub enum OrbitPolicy {
    /// 0-cell orbit.
    Vertex,
    /// 1-cell orbit.
    Edge,
    /// 2-cell orbit.
    Face,
    /// Ordered array of beta functions that define the orbit.
    Custom(&'static [u8]),
}

/// Generic 2D orbit implementation
///
/// This structure only contains meta-data about the orbit in its initial state. All the darts
/// making up the orbit are computed when using the methods that come with the [Iterator]
/// implementation.
///
/// It is not currently possible to iterate over references, the orbit has to be consumed for its
/// result to be used. This is most likely the best behavior since orbits should be consumed upon
/// traversal to avoid inconsistencies created by a later mutable operation on the map.
///
/// # Generics
///
/// - `'a` -- Lifetime of the reference to the map
/// - `T: CoordsFloat` -- Generic parameter of the referenced map.
///
/// # The search algorithm
///
/// The search algorithm used to establish the list of dart included in the orbit is a
/// [Breadth-First Search algorithm][WIKIBFS]. This means that:
///
/// - we look at the images of the current dart through all beta functions,
///   adding those to a queue, before moving on to the next dart.
/// - we apply the beta functions in their specified order (in the case of a
///   custom [`OrbitPolicy`]); This guarantees a consistent and predictable result.
///
/// Both of these points allow orbitd to be used for sewing operations at the cost of some
/// performance (non-trivial parallelization & sequential consistency requirements).
///
/// [WIKIBFS]: https://en.wikipedia.org/wiki/Breadth-first_search
///
/// # Example
///
/// See [`CMap2`] example.
///
pub struct Orbit2<'a, T: CoordsFloat> {
    /// Reference to the map containing the beta functions used in the BFS.
    map_handle: &'a CMap2<T>,
    /// Policy used by the orbit for the BFS. It can be predetermined or custom.
    orbit_policy: OrbitPolicy,
    /// Set used to identify which dart is marked during the BFS.
    marked: BTreeSet<DartIdType>,
    /// Queue used to store which dart must be visited next during the BFS.
    pending: VecDeque<DartIdType>,
}

impl<'a, T: CoordsFloat> Orbit2<'a, T> {
    /// Constructor
    ///
    /// # Arguments
    ///
    /// - `map_handle: &'a CMap2<T>` -- Reference to the map containing the beta
    ///   functions used in the BFS.
    /// - `orbit_policy: OrbitPolicy<'a>` -- Policy used by the orbit for the BFS.
    /// - `dart: DartIdentifier` -- Dart of which the structure will compute the orbit.
    ///
    /// # Return
    ///
    /// Return an [Orbit2] structure that can be iterated upon to retrieve the orbit's darts.
    ///
    /// # Panics
    ///
    /// The method may panic if no beta index is passed along the custom policy. Additionally,
    /// if an invalid beta index is passed through the custom policy (e.g. `3` for a 2D map),
    /// a panic will occur on iteration
    ///
    /// # Example
    ///
    /// See [`CMap2`] example.
    ///
    #[must_use = "orbits are lazy and do nothing unless consumed"]
    pub fn new(map_handle: &'a CMap2<T>, orbit_policy: OrbitPolicy, dart: DartIdType) -> Self {
        let mut marked = BTreeSet::<DartIdType>::new();
        marked.insert(NULL_DART_ID); // we don't want to include the null dart in the orbit
        marked.insert(dart); // we're starting here, so we mark it beforehand
        let pending = VecDeque::from([dart]);
        /*
        if let OrbitPolicy::Custom(slice) = orbit_policy {
            assert!(!slice.len().is_zero());
        }
        */
        Self {
            map_handle,
            orbit_policy,
            marked,
            pending,
        }
    }
}

impl<'a, T: CoordsFloat> Iterator for Orbit2<'a, T> {
    type Item = DartIdType;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(d) = self.pending.pop_front() {
            match self.orbit_policy {
                OrbitPolicy::Vertex => {
                    // THIS CODE IS ONLY VALID IN 2D

                    let image1 = self.map_handle.beta::<1>(self.map_handle.beta::<2>(d));
                    if self.marked.insert(image1) {
                        // if true, we did not see this dart yet
                        // i.e. we need to visit it later
                        self.pending.push_back(image1);
                    }
                    let image2 = self.map_handle.beta::<2>(self.map_handle.beta::<0>(d));
                    if self.marked.insert(image2) {
                        // if true, we did not see this dart yet
                        // i.e. we need to visit it later
                        self.pending.push_back(image2);
                    }
                }
                OrbitPolicy::Edge => {
                    // THIS CODE IS ONLY VALID IN 2D
                    let image = self.map_handle.beta::<2>(d);
                    if self.marked.insert(image) {
                        // if true, we did not see this dart yet
                        // i.e. we need to visit it later
                        self.pending.push_back(image);
                    }
                }
                OrbitPolicy::Face => {
                    // THIS CODE IS ONLY VALID IN 2D
                    // WE ASSUME THAT THE FACE IS COMPLETE
                    let image = self.map_handle.beta::<1>(d);
                    if self.marked.insert(image) {
                        // if true, we did not see this dart yet
                        // i.e. we need to visit it later
                        self.pending.push_back(image);
                    }
                }
                OrbitPolicy::Custom(beta_slice) => {
                    for beta_id in beta_slice {
                        let image = self.map_handle.beta_runtime(*beta_id, d);
                        if self.marked.insert(image) {
                            // if true, we did not see this dart yet
                            // i.e. we need to visit it later
                            self.pending.push_back(image);
                        }
                    }
                }
            }
            Some(d)
        } else {
            None
        }
    }
}

// ------ TESTS

#[allow(unused_mut)]
#[cfg(test)]
mod tests {
    use super::*;

    fn simple_map() -> CMap2<f64> {
        let mut map: CMap2<f64> = CMap2::new(6);
        map.one_link(1, 2);
        map.one_link(2, 3);
        map.one_link(3, 1);
        map.one_link(4, 5);
        map.one_link(5, 6);
        map.one_link(6, 4);
        map.two_link(2, 4);
        assert!(map.replace_vertex(1, (0.0, 0.0)).is_none());
        assert!(map.replace_vertex(2, (1.0, 0.0)).is_none());
        assert!(map.replace_vertex(6, (1.0, 1.0)).is_none());
        assert!(map.replace_vertex(3, (0.0, 1.0)).is_none());
        map
    }

    #[test]
    fn full_map_from_orbit() {
        let map = simple_map();
        let orbit = Orbit2::new(&map, OrbitPolicy::Custom(&[1, 2]), 3);
        let darts: Vec<DartIdType> = orbit.collect();
        assert_eq!(darts.len(), 6);
        // because the algorithm is consistent, we can predict the exact layout
        assert_eq!(&darts, &[3, 1, 2, 4, 5, 6]);
    }

    #[test]
    fn face_from_orbit() {
        let map = simple_map();
        let face_orbit = Orbit2::new(&map, OrbitPolicy::Face, 1);
        let darts: Vec<DartIdType> = face_orbit.collect();
        assert_eq!(darts.len(), 3);
        assert_eq!(&darts, &[1, 2, 3]);
        let other_face_orbit = Orbit2::new(&map, OrbitPolicy::Custom(&[1]), 5);
        let other_darts: Vec<DartIdType> = other_face_orbit.collect();
        assert_eq!(other_darts.len(), 3);
        assert_eq!(&other_darts, &[5, 6, 4]);
    }

    #[test]
    fn edge_from_orbit() {
        let map = simple_map();
        let face_orbit = Orbit2::new(&map, OrbitPolicy::Edge, 1);
        let darts: Vec<DartIdType> = face_orbit.collect();
        assert_eq!(darts.len(), 1);
        assert_eq!(&darts, &[1]); // dart 1 is on the boundary
        let other_face_orbit = Orbit2::new(&map, OrbitPolicy::Custom(&[2]), 4);
        let other_darts: Vec<DartIdType> = other_face_orbit.collect();
        assert_eq!(other_darts.len(), 2);
        assert_eq!(&other_darts, &[4, 2]);
    }

    #[test]
    fn vertex_from_orbit() {
        let map = simple_map();
        let orbit = Orbit2::new(&map, OrbitPolicy::Vertex, 4);
        let darts: Vec<DartIdType> = orbit.collect();
        // note that this one fails if we start at 3, because the vertex is not complete
        assert_eq!(darts.len(), 2);
        assert_eq!(&darts, &[4, 3]);
    }

    #[test]
    fn empty_orbit_policy() {
        let map = simple_map();
        let darts: Vec<DartIdType> = Orbit2::new(&map, OrbitPolicy::Custom(&[]), 3).collect();
        assert_eq!(&darts, &[3]);
    }

    #[test]
    #[should_panic(expected = "assertion failed: i < 3")]
    fn invalid_orbit_policy() {
        let map = simple_map();
        let orbit = Orbit2::new(&map, OrbitPolicy::Custom(&[6]), 3);
        let _: Vec<DartIdType> = orbit.collect();
    }
}