honeycomb_core/cmap/dim2/basic_ops.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//! Basic operations implementation
//!
//! This module contains code used to implement basic operations of combinatorial maps, such as
//! (but not limited to):
//!
//! - Dart addition / insertion / removal
//! - Beta function interfaces
//! - i-cell computations
// ------ IMPORTS
use crate::prelude::{
CMap2, DartIdType, EdgeIdType, FaceIdType, Orbit2, OrbitPolicy, VertexIdType, NULL_DART_ID,
};
use crate::{
attributes::UnknownAttributeStorage,
cmap::{EdgeCollection, FaceCollection, VertexCollection},
geometry::CoordsFloat,
};
use std::collections::{BTreeSet, VecDeque};
use stm::{atomically, StmError, Transaction};
// ------ CONTENT
/// **Dart-related methods**
impl<T: CoordsFloat> CMap2<T> {
// --- read
/// Return information about the current number of darts.
#[must_use = "returned value is not used, consider removing this method call"]
pub fn n_darts(&self) -> usize {
self.n_darts
}
/// Return information about the current number of unused darts.
#[must_use = "returned value is not used, consider removing this method call"]
pub fn n_unused_darts(&self) -> usize {
self.unused_darts.iter().filter(|v| v.read_atomic()).count()
}
// --- edit
/// Add a new free dart to the combinatorial map.
///
/// The dart is i-free for all i and is pushed to the list of existing darts, effectively
/// making its identifier equal to the total number of darts (post-push).
///
/// # Return
///
/// Return the ID of the created dart to allow for direct operations.
///
pub fn add_free_dart(&mut self) -> DartIdType {
let new_id = self.n_darts as DartIdType;
self.n_darts += 1;
self.betas.extend(1);
self.unused_darts.extend(1);
self.vertices.extend(1);
self.attributes.extend_storages(1);
new_id
}
/// Add multiple new free darts to the combinatorial map.
///
/// All darts are i-free for all i and are pushed to the end of the list of existing darts.
///
/// # Arguments
///
/// - `n_darts: usize` -- Number of darts to have.
///
/// # Return
///
/// Return the `ID` of the first created dart to allow for direct operations. Darts are
/// positioned on range `ID..ID+n_darts`.
///
pub fn add_free_darts(&mut self, n_darts: usize) -> DartIdType {
let new_id = self.n_darts as DartIdType;
self.n_darts += n_darts;
self.betas.extend(n_darts);
self.unused_darts.extend(n_darts);
self.vertices.extend(n_darts);
self.attributes.extend_storages(n_darts);
new_id
}
/// Insert a new free dart to the combinatorial map.
///
/// The dart is i-free for all i and may be inserted into an unused spot in the existing dart
/// list. If no free spots exist, it will be pushed to the end of the list.
///
/// # Return
///
/// Return the ID of the created dart to allow for direct operations.
///
pub fn insert_free_dart(&mut self) -> DartIdType {
if let Some((new_id, _)) = self
.unused_darts
.iter()
.enumerate()
.find(|(_, u)| u.read_atomic())
{
atomically(|trans| self.unused_darts[new_id as DartIdType].write(trans, false));
new_id as DartIdType
} else {
self.add_free_dart()
}
}
/// Remove a free dart from the combinatorial map.
///
/// The removed dart identifier is added to the list of free dart. This way of proceeding is
/// necessary as the structure relies on darts indexing for encoding data, making reordering of
/// any sort extremely costly.
///
/// By keeping track of free spots in the dart arrays, we can prevent too much memory waste,
/// although at the cost of locality of reference.
///
/// # Arguments
///
/// - `dart_id: DartIdentifier` -- Identifier of the dart to remove.
///
/// # Panics
///
/// This method may panic if:
///
/// - The dart is not *i*-free for all *i*.
/// - The dart is already marked as unused (Refer to [`Self::remove_vertex`] documentation for
/// a detailed breakdown of this choice).
///
pub fn remove_free_dart(&mut self, dart_id: DartIdType) {
atomically(|trans| {
assert!(self.is_free(dart_id)); // all beta images are 0
assert!(!self.unused_darts[dart_id as DartIdType].replace(trans, true)?);
Ok(())
});
}
}
/// **Beta-related methods**
impl<T: CoordsFloat> CMap2<T> {
// --- read
/// Compute the value of the i-th beta function of a given dart.
///
/// # Arguments
///
/// - `dart_id: DartIdentifier` -- Identifier of a given dart.
///
/// ## Generics
///
/// - `const I: u8` -- Index of the beta function. *I* should be 0, 1 or 2 for a 2D map.
///
/// # Return
///
/// Return the identifier of the dart *d* such that *d = β<sub>i</sub>(dart)*. If the returned
/// value is the null dart (i.e. a dart ID equal to 0), this means that the dart is i-free.
///
/// # Panics
///
/// The method will panic if *I* is not 0, 1 or 2.
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn beta<const I: u8>(&self, dart_id: DartIdType) -> DartIdType {
assert!(I < 3);
self.betas[(I, dart_id)].read_atomic()
}
/// Compute the value of the i-th beta function of a given dart.
///
/// # Arguments
///
/// - `dart_id: DartIdentifier` -- Identifier of a given dart.
/// - `i: u8` -- Index of the beta function. *i* should be 0, 1 or 2 for a 2D map.
///
/// # Return
///
/// Return the identifier of the dart *d* such that *d = β<sub>i</sub>(dart)*. If the returned
/// value is the null dart (i.e. a dart ID equal to 0), this means that the dart is i-free.
///
/// # Panics
///
/// The method will panic if *i* is not 0, 1 or 2.
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn beta_runtime(&self, i: u8, dart_id: DartIdType) -> DartIdType {
assert!(i < 3);
match i {
0 => self.beta::<0>(dart_id),
1 => self.beta::<1>(dart_id),
2 => self.beta::<2>(dart_id),
_ => unreachable!(),
}
}
/// Check if a given dart is i-free.
///
/// # Arguments
///
/// - `dart_id: DartIdentifier` -- Identifier of a given dart.
///
/// ## Generics
///
/// - `const I: u8` -- Index of the beta function. *I* should be 0, 1 or 2 for a 2D map.
///
/// # Return
///
/// Return a boolean indicating if the dart is i-free, i.e.
/// *β<sub>i</sub>(dart) = `NULL_DART_ID`*.
///
/// # Panics
///
/// The function will panic if *I* is not 0, 1 or 2.
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn is_i_free<const I: u8>(&self, dart_id: DartIdType) -> bool {
self.beta::<I>(dart_id) == NULL_DART_ID
}
/// Check if a given dart is i-free, for all i.
///
/// # Arguments
///
/// - `dart_id: DartIdentifier` -- Identifier of a given dart.
///
/// # Return
///
/// Return a boolean indicating if the dart is 0-free, 1-free **and** 2-free.
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn is_free(&self, dart_id: DartIdType) -> bool {
self.beta::<0>(dart_id) == NULL_DART_ID
&& self.beta::<1>(dart_id) == NULL_DART_ID
&& self.beta::<2>(dart_id) == NULL_DART_ID
}
}
/// **I-cell-related methods**
impl<T: CoordsFloat> CMap2<T> {
#[allow(clippy::missing_panics_doc)]
/// Fetch vertex identifier associated to a given dart.
///
/// # Arguments
///
/// - `dart_id: DartIdentifier` -- Identifier of a given dart.
///
/// # Return
///
/// Return the identifier of the associated vertex.
///
/// ## Note on cell identifiers
///
/// Cells identifiers are defined as the smallest identifier among the darts that make up the
/// cell. This definition has three interesting properties:
///
/// - A given cell ID can be computed from any dart of the cell, i.e. all darts have an
/// associated cell ID.
/// - Cell IDs are not affected by the order of traversal of the map.
/// - Because the ID is computed in real time, there is no need to store cell IDs and ensure
/// that the storage is consistent / up to date.
///
/// These properties come at the literal cost of the computation routine, which is:
/// 1. a BFS to compute a given orbit
/// 2. a minimum computation on the IDs composing the orbit
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn vertex_id(&self, dart_id: DartIdType) -> VertexIdType {
// unwraping the result is safe because the orbit is always non empty
Orbit2::<'_, T>::new(self, OrbitPolicy::Vertex, dart_id)
.min()
.expect("E: unreachable") as VertexIdType
}
/// Atomically compute the associated vertex ID.
pub(crate) fn vertex_id_transac(
&self,
trans: &mut Transaction,
dart_id: DartIdType,
) -> Result<VertexIdType, StmError> {
let mut marked = BTreeSet::<DartIdType>::new();
marked.insert(NULL_DART_ID); // we don't want to include the null dart in the orbit
marked.insert(dart_id); // we're starting here, so we mark it beforehand
let mut pending = VecDeque::from([dart_id]);
while let Some(d) = pending.pop_front() {
let image1 = self.betas[(1, self.betas[(2, d)].read(trans)?)].read(trans)?;
if marked.insert(image1) {
// if true, we did not see this dart yet
// i.e. we need to visit it later
pending.push_back(image1);
}
let image2 = self.betas[(2, self.betas[(0, d)].read(trans)?)].read(trans)?;
if marked.insert(image2) {
// if true, we did not see this dart yet
// i.e. we need to visit it later
pending.push_back(image2);
}
}
marked.remove(&NULL_DART_ID);
Ok(marked.into_iter().min().unwrap() as VertexIdType)
}
#[allow(clippy::missing_panics_doc)]
/// Fetch edge associated to a given dart.
///
/// # Arguments
///
/// - `dart_id: DartIdentifier` -- Identifier of a given dart.
///
/// # Return
///
/// Return the identifier of the associated edge.
///
/// ## Note on cell identifiers
///
/// Cells identifiers are defined as the smallest identifier among the darts that make up the
/// cell. This definition has three interesting properties:
///
/// - A given cell ID can be computed from any dart of the cell, i.e. all darts have an
/// associated cell ID.
/// - Cell IDs are not affected by the order of traversal of the map.
/// - Because the ID is computed in real time, there is no need to store cell IDs and ensure
/// that the storage is consistent / up to date.
///
/// These properties come at the literal cost of the computation routine, which is:
/// 1. a BFS to compute a given orbit
/// 2. a minimum computation on the IDs composing the orbit
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn edge_id(&self, dart_id: DartIdType) -> EdgeIdType {
// unwraping the result is safe because the orbit is always non empty
Orbit2::<'_, T>::new(self, OrbitPolicy::Edge, dart_id)
.min()
.expect("E: unreachable") as EdgeIdType
}
/// Atomically compute the associated edge ID.
pub(crate) fn edge_id_transac(
&self,
trans: &mut Transaction,
dart_id: DartIdType,
) -> Result<EdgeIdType, StmError> {
// optimizing this one bc I'm tired
let b2 = self.betas[(2, dart_id)].read(trans)?;
if b2 == NULL_DART_ID {
Ok(dart_id as EdgeIdType)
} else {
Ok(b2.min(dart_id) as EdgeIdType)
}
}
#[allow(clippy::missing_panics_doc)]
/// Fetch face associated to a given dart.
///
/// # Arguments
///
/// - `dart_id: DartIdentifier` -- Identifier of a given dart.
///
/// # Return
///
/// Return the identifier of the associated face.
///
/// ## Note on cell identifiers
///
/// Cells identifiers are defined as the smallest identifier among the darts that make up the
/// cell. This definition has three interesting properties:
///
/// - A given cell ID can be computed from any dart of the cell, i.e. all darts have an
/// associated cell ID.
/// - Cell IDs are not affected by the order of traversal of the map.
/// - Because the ID is computed in real time, there is no need to store cell IDs and ensure
/// that the storage is consistent / up to date.
///
/// These properties come at the literal cost of the computation routine, which is:
/// 1. a BFS to compute a given orbit
/// 2. a minimum computation on the IDs composing the orbit
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn face_id(&self, dart_id: DartIdType) -> FaceIdType {
// unwraping the result is safe because the orbit is always non empty
Orbit2::<'_, T>::new(self, OrbitPolicy::Face, dart_id)
.min()
.expect("E: unreachable") as FaceIdType
}
#[allow(unused)]
/// Atomically compute the associated face ID.
pub(crate) fn face_id_transac(
&self,
trans: &mut Transaction,
dart_id: DartIdType,
) -> Result<FaceIdType, StmError> {
let mut marked = BTreeSet::<DartIdType>::new();
marked.insert(NULL_DART_ID); // we don't want to include the null dart in the orbit
marked.insert(dart_id); // we're starting here, so we mark it beforehand
let mut pending = VecDeque::from([dart_id]);
while let Some(d) = pending.pop_front() {
// WE ASSUME THAT THE FACE IS COMPLETE
let image = self.betas[(1, d)].read(trans)?;
if marked.insert(image) {
// if true, we did not see this dart yet
// i.e. we need to visit it later
pending.push_back(image);
}
}
marked.remove(&NULL_DART_ID);
Ok(marked.into_iter().min().unwrap() as FaceIdType)
}
/// Return an [`Orbit2`] object that can be used to iterate over darts of an i-cell.
///
/// # Arguments
///
/// - `dart_id: DartIdentifier` -- Identifier of a given dart.
///
/// ## Generics
///
/// - `const I: u8` -- Dimension of the cell of interest. *I* should be 0 (vertex), 1 (edge) or
/// 2 (face) for a 2D map.
///
/// # Return
///
/// Returns an [`Orbit2`] that can be iterated upon to retrieve all dart member of the cell. Note
/// that **the dart passed as an argument is included as the first element of the returned
/// orbit**.
///
/// # Panics
///
/// The method will panic if *I* is not 0, 1 or 2.
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn i_cell<const I: u8>(&self, dart_id: DartIdType) -> Orbit2<T> {
assert!(I < 3);
match I {
0 => Orbit2::<'_, T>::new(self, OrbitPolicy::Vertex, dart_id),
1 => Orbit2::<'_, T>::new(self, OrbitPolicy::Edge, dart_id),
2 => Orbit2::<'_, T>::new(self, OrbitPolicy::Face, dart_id),
_ => unreachable!(),
}
}
/// Return a collection of all the map's vertices.
///
/// # Return
///
/// Return a [`VertexCollection`] object containing a list of vertex identifiers, whose validity
/// is ensured through an implicit lifetime condition on the structure and original map.
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn fetch_vertices(&self) -> VertexCollection<T> {
let vids: BTreeSet<VertexIdType> = (1..self.n_darts as DartIdType)
.zip(self.unused_darts.iter().skip(1))
.filter_map(|(d, unused)| {
if unused.read_atomic() {
None
} else {
Some(self.vertex_id(d))
}
})
.collect(); // duplicates are automatically handled when colelcting into a set
VertexCollection::<'_, T>::new(self, vids)
}
/// Return a collection of all the map's edges.
///
/// # Return
///
/// Return an [`EdgeCollection`] object containing a list of edge identifiers, whose validity
/// is ensured through an implicit lifetime condition on the structure and original map.
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn fetch_edges(&self) -> EdgeCollection<T> {
let eids: BTreeSet<EdgeIdType> = (1..self.n_darts as DartIdType)
.zip(self.unused_darts.iter().skip(1))
.filter_map(|(d, unused)| {
if unused.read_atomic() {
None
} else {
Some(self.edge_id(d))
}
})
.collect(); // duplicates are automatically handled when colelcting into a set
EdgeCollection::<'_, T>::new(self, eids)
}
/// Return a collection of all the map's faces.
///
/// # Return
///
/// Return a [`FaceCollection`] object containing a list of face identifiers, whose validity
/// is ensured through an implicit lifetime condition on the structure and original map.
///
#[must_use = "returned value is not used, consider removing this method call"]
pub fn fetch_faces(&self) -> FaceCollection<T> {
let fids: BTreeSet<EdgeIdType> = (1..self.n_darts as DartIdType)
.zip(self.unused_darts.iter().skip(1))
.filter_map(|(d, unused)| {
if unused.read_atomic() {
None
} else {
Some(self.face_id(d))
}
})
.collect(); // duplicates are automatically handled when colelcting into a set
FaceCollection::<'_, T>::new(self, fids)
}
}