honeycomb_core/cmap/builder/io.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
use crate::prelude::{BuilderError, CMap2, CMapBuilder, DartIdType, Vertex2, VertexIdType};
use crate::{attributes::AttrStorageManager, geometry::CoordsFloat};
use std::collections::BTreeMap;
use num_traits::Zero;
use vtkio::model::{CellType, DataSet, VertexNumbers};
use vtkio::{IOBuffer, Vtk};
/// Create a [`CMapBuilder`] from the VTK file specified by the path.
///
/// # Panics
///
/// This function may panic if the file cannot be loaded.
impl<T: CoordsFloat, P: AsRef<std::path::Path> + std::fmt::Debug> From<P> for CMapBuilder<T> {
fn from(value: P) -> Self {
let vtk_file =
Vtk::import(value).unwrap_or_else(|e| panic!("E: failed to load file: {e:?}"));
CMapBuilder {
vtk_file: Some(vtk_file),
..Default::default()
}
}
}
// --- building routine
macro_rules! if_predicate_return_err {
($pr: expr, $er: expr) => {
if $pr {
return Err($er);
}
};
}
macro_rules! build_vertices {
($v: ident) => {{
if_predicate_return_err!(
!($v.len() % 3).is_zero(),
BuilderError::BadVtkData("vertex list contains an incomplete tuple")
);
$v.chunks_exact(3)
.map(|slice| {
// WE IGNORE Z values
let &[x, y, _] = slice else { unreachable!() };
Vertex2(T::from(x).unwrap(), T::from(y).unwrap())
})
.collect()
}};
}
#[allow(clippy::too_many_lines)]
/// Internal building routine for [`CMap2::from_vtk_file`].
///
/// # Result / Errors
///
/// This implementation support only a very specific subset of VTK files. This result in many
/// possibilities for failure. This function may return:
///
/// - `Ok(CMap2)` -- The file was successfully parsed and its content made into a 2-map.
/// - `Err(BuilderError)` -- The function failed for one of the following reasons (sorted
/// by [`BuilderError`] variants):
/// - `UnsupportedVtkData`: The file contains unsupported data, i.e.:
/// - file format isn't Legacy,
/// - data set is something other than `UnstructuredGrid`,
/// - coordinate representation type isn't `float` or `double`
/// - mesh contains unsupported cell types (`PolyVertex`, `PolyLine`, `TriangleStrip`,
/// `Pixel` or anything 3D)
/// - `InvalidVtkFile`: The file contains inconsistencies, i.e.:
/// - the number of coordinates cannot be divided by `3`, meaning a tuple is incomplete
/// - the number of `Cells` and `CellTypes` isn't equal
/// - a given cell has an inconsistent number of vertices with its specified cell type
pub fn build_2d_from_vtk<T: CoordsFloat>(
value: Vtk,
mut _manager: AttrStorageManager, // FIXME: find a cleaner solution to populate the manager
) -> Result<CMap2<T>, BuilderError> {
let mut cmap: CMap2<T> = CMap2::new(0);
let mut sew_buffer: BTreeMap<(usize, usize), DartIdType> = BTreeMap::new();
match value.data {
DataSet::ImageData { .. }
| DataSet::StructuredGrid { .. }
| DataSet::RectilinearGrid { .. }
| DataSet::PolyData { .. }
| DataSet::Field { .. } => {
return Err(BuilderError::UnsupportedVtkData("dataset not supported"))
}
DataSet::UnstructuredGrid { pieces, .. } => {
let mut tmp = pieces.iter().map(|piece| {
// assume inline data
let Ok(tmp) = piece.load_piece_data(None) else {
return Err(BuilderError::UnsupportedVtkData("not inlined data piece"));
};
// build vertex list
// since we're expecting coordinates, we'll assume floating type
// we're also converting directly to our vertex type since we're building a 2-map
let vertices: Vec<Vertex2<T>> = match tmp.points {
IOBuffer::F64(v) => build_vertices!(v),
IOBuffer::F32(v) => build_vertices!(v),
_ => {
return Err(BuilderError::UnsupportedVtkData(
"unsupported coordinate type",
))
}
};
let vtkio::model::Cells { cell_verts, types } = tmp.cells;
match cell_verts {
VertexNumbers::Legacy {
num_cells,
vertices: verts,
} => {
// check basic stuff
if_predicate_return_err!(
num_cells as usize != types.len(),
BuilderError::BadVtkData("different # of cell in CELLS and CELL_TYPES")
);
// build a collection of vertex lists corresponding of each cell
let mut cell_components: Vec<Vec<usize>> = Vec::new();
let mut take_next = 0;
for vertex_id in &verts {
if take_next.is_zero() {
// making it usize since it's a counter
take_next = *vertex_id as usize;
cell_components.push(Vec::with_capacity(take_next));
} else {
cell_components
.last_mut()
.expect("E: unreachable")
.push(*vertex_id as usize);
take_next -= 1;
}
}
assert_eq!(num_cells as usize, cell_components.len());
let mut errs =
types
.iter()
.zip(cell_components.iter())
.map(|(cell_type, vids)| match cell_type {
CellType::Vertex => {
if_predicate_return_err!(
vids.len() != 1,
BuilderError::BadVtkData(
"`Vertex` with incorrect # of vertices (!=1)"
)
);
// silent ignore
Ok(())
}
CellType::PolyVertex => Err(BuilderError::UnsupportedVtkData(
"`PolyVertex` cell type",
)),
CellType::Line => {
if_predicate_return_err!(
vids.len() != 2,
BuilderError::BadVtkData(
"`Line` with incorrect # of vertices (!=2)"
)
);
// silent ignore
Ok(())
}
CellType::PolyLine => Err(BuilderError::UnsupportedVtkData(
"`PolyLine` cell type",
)),
CellType::Triangle => {
// check validity
if_predicate_return_err!(
vids.len() != 3,
BuilderError::BadVtkData(
"`Triangle` with incorrect # of vertices (!=3)"
)
);
// build the triangle
let d0 = cmap.add_free_darts(3);
let (d1, d2) = (d0 + 1, d0 + 2);
cmap.force_write_vertex(
d0 as VertexIdType,
vertices[vids[0]],
);
cmap.force_write_vertex(
d1 as VertexIdType,
vertices[vids[1]],
);
cmap.force_write_vertex(
d2 as VertexIdType,
vertices[vids[2]],
);
cmap.force_link::<1>(d0, d1); // edge d0 links vertices vids[0] & vids[1]
cmap.force_link::<1>(d1, d2); // edge d1 links vertices vids[1] & vids[2]
cmap.force_link::<1>(d2, d0); // edge d2 links vertices vids[2] & vids[0]
// record a trace of the built cell for future 2-sew
sew_buffer.insert((vids[0], vids[1]), d0);
sew_buffer.insert((vids[1], vids[2]), d1);
sew_buffer.insert((vids[2], vids[0]), d2);
Ok(())
}
CellType::TriangleStrip => {
Err(BuilderError::UnsupportedVtkData(
"`TriangleStrip` cell type",
))
}
CellType::Polygon => {
let n_vertices = vids.len();
let d0 = cmap.add_free_darts(n_vertices);
(0..n_vertices).for_each(|i| {
let di = d0 + i as DartIdType;
let dip1 =
if i == n_vertices - 1 { d0 } else { di + 1 };
cmap.force_write_vertex(
di as VertexIdType,
vertices[vids[i]],
);
cmap.force_link::<1>(di, dip1);
sew_buffer
.insert((vids[i], vids[(i + 1) % n_vertices]), di);
});
Ok(())
}
CellType::Pixel => {
Err(BuilderError::UnsupportedVtkData("`Pixel` cell type"))
}
CellType::Quad => {
if_predicate_return_err!(
vids.len() != 4,
BuilderError::BadVtkData(
"`Quad` with incorrect # of vertices (!=4)"
)
);
// build the quad
let d0 = cmap.add_free_darts(4);
let (d1, d2, d3) = (d0 + 1, d0 + 2, d0 + 3);
cmap.force_write_vertex(
d0 as VertexIdType,
vertices[vids[0]],
);
cmap.force_write_vertex(
d1 as VertexIdType,
vertices[vids[1]],
);
cmap.force_write_vertex(
d2 as VertexIdType,
vertices[vids[2]],
);
cmap.force_write_vertex(
d3 as VertexIdType,
vertices[vids[3]],
);
cmap.force_link::<1>(d0, d1); // edge d0 links vertices vids[0] & vids[1]
cmap.force_link::<1>(d1, d2); // edge d1 links vertices vids[1] & vids[2]
cmap.force_link::<1>(d2, d3); // edge d2 links vertices vids[2] & vids[3]
cmap.force_link::<1>(d3, d0); // edge d3 links vertices vids[3] & vids[0]
// record a trace of the built cell for future 2-sew
sew_buffer.insert((vids[0], vids[1]), d0);
sew_buffer.insert((vids[1], vids[2]), d1);
sew_buffer.insert((vids[2], vids[3]), d2);
sew_buffer.insert((vids[3], vids[0]), d3);
Ok(())
}
_ => Err(BuilderError::UnsupportedVtkData(
"CellType not supported in 2-maps",
)),
});
if let Some(is_err) = errs.find(Result::is_err) {
return Err(is_err.unwrap_err()); // unwrap & wrap because type inference is clunky
}
}
VertexNumbers::XML { .. } => {
return Err(BuilderError::UnsupportedVtkData("XML format"));
}
}
Ok(())
});
// return the first error if there is one
if let Some(is_err) = tmp.find(Result::is_err) {
return Err(is_err.unwrap_err()); // unwrap & wrap because type inference is clunky
}
}
}
while let Some(((id0, id1), dart_id0)) = sew_buffer.pop_first() {
if let Some(dart_id1) = sew_buffer.remove(&(id1, id0)) {
cmap.force_sew::<2>(dart_id0, dart_id1);
}
}
Ok(cmap)
}